Let (left{x_{n}ight}_{n=1}^{infty}) and (left{y_{n}ight}_{n=1}^{infty}) be a sequences of real numbers such that [left|limsup _{n ightarrow infty} x_{n}ight|
Question:
Let \(\left\{x_{n}ight\}_{n=1}^{\infty}\) and \(\left\{y_{n}ight\}_{n=1}^{\infty}\) be a sequences of real numbers such that
\[\left|\limsup _{n ightarrow \infty} x_{n}ight|<\infty\]
and
\[\left|\limsup _{n ightarrow \infty} y_{n}ight|<\infty\]
Then prove that
\[\liminf _{n ightarrow \infty} x_{n}+\liminf _{n ightarrow \infty} y_{n} \leq \liminf _{n ightarrow \infty}\left(x_{n}+y_{n}ight)\]
and
\[\limsup _{n ightarrow \infty}\left(x_{n}+y_{n}ight) \leq \limsup _{n ightarrow \infty} x_{n}+\limsup _{n ightarrow \infty} y_{n} .\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: