Let (left{x_{n}ight}_{n=1}^{infty}) and (left{y_{n}ight}_{n=1}^{infty}) be a sequences of real numbers such that (x_{n}>0) and (y_{n}>0) for all
Question:
Let \(\left\{x_{n}ight\}_{n=1}^{\infty}\) and \(\left\{y_{n}ight\}_{n=1}^{\infty}\) be a sequences of real numbers such that \(x_{n}>0\) and \(y_{n}>0\) for all \(n \in \mathbb{N}\),
\[0<\limsup _{n ightarrow \infty} x_{n}<\infty\]
and
\[0<\limsup _{n ightarrow \infty} y_{n}<\infty\]
Prove that
\[\limsup _{n ightarrow \infty} x_{n} y_{n} \leq\left(\limsup _{n ightarrow \infty} x_{n}ight)\left(\limsup _{n ightarrow \infty} y_{n}ight)\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: