Let (X_{1}, ldots, X_{n}) be a set of independent and identically distributed random variables from a shifted

Question:

Let \(X_{1}, \ldots, X_{n}\) be a set of independent and identically distributed random variables from a shifted exponential density of the form

\[f(x)= \begin{cases}\exp [-(x-\theta)] & \text { for } x \geq \theta \\ 0 & \text { for } x<\theta\end{cases}\]

Let \(X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}ight\}\). Prove that \(X_{(1)} \xrightarrow{p} \theta\) as \(n ightarrow \infty\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: