Each morning between 6:30 AM and 8:00 AM Bill leaves the Melbourne suburb of Carnegie to drive

Question:

Each morning between 6:30 AM and 8:00 AM Bill leaves the Melbourne suburb of Carnegie to drive to work at the University of Melbourne. The time it takes Bill to drive to work (TIME), depends on the departure time (DEPART), the number of red lights that he encounters (REDS), and the number of trains that he has to wait for at the Murrumbeena level crossing (TRAINS). Observations on these variables for the 249 working days in 2015 appear in the file commute5. TIME is measured in minutes. DEPART is the number of minutes after 6:30 AM that Bill departs.

a. Estimate the equation

image text in transcribed

Report the results and interpret each of the coefficient estimates, including the intercept \(\beta_{1}\).

b. Find \(95 \%\) interval estimates for each of the coefficients. Have you obtained precise estimates of each of the coefficients?

c. Using a 5\% significance level, test the null hypothesis that Bill's expected delay from each red light is 2 minutes or more against the alternative that it is less than 2 minutes.

d. Using a \(10 \%\) significance level, test the null hypothesis that the expected delay from each train is 3 minutes against the alternative that it is not 3 minutes.

e. Using a 5\% significance level, test the null hypothesis that Bill can expect a trip to be at least 10 minutes longer if he leaves at 7:30 AM instead of 7:00 AM, against the alternative that it will not be 10 minutes longer. (Assume other things are equal.)

f. Using a 5\% significance level, test the null hypothesis that the expected delay from a train is at least three times greater than the expected delay from a red light against the alternative that it is less than three times greater.

g. Suppose that Bill encounters six red lights and one train. Using a 5\% significance level, test the null hypothesis that leaving Carnegie at 7:00 Am is early enough to get him to the university on or before 7:45 AM against the alternative that it is not. [Carry out the test in terms of the expected time \(E(T I M E \mid \mathbf{X})\) where \(\mathbf{X}\) represents the observations on all explanatory variables.]

h. Suppose that, in part (g), it is imperative that Bill is not late for his 7:45 AM meeting. Have the null and alternative hypotheses been set up correctly? What happens if these hypotheses are reversed?

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Principles Of Econometrics

ISBN: 9781118452271

5th Edition

Authors: R Carter Hill, William E Griffiths, Guay C Lim

Question Posted: