Repeat the given exercise using the GaussSeidel method. Take the zero vector as the initial approximation and
Question:
Repeat the given exercise using the GaussSeidel method. Take the zero vector as the initial approximation and work with four-significant-digit accuracy until two successive iterates agree within 0.001 in each variable. Compare the number of iterations required by the Jacobi and Gauss-Seidel methods to reach such an approximate solution.
20x1 + x2 - x3 = 17
x1 - 10x2 + x3 = 13
-x1 + x2 + 10x3 = 18
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: