Evaluate (int_{0}^{1} int_{0}^{1} f(x, y) d x d y, int_{0}^{1} int_{0}^{1} f(x, y) d y d x)
Question:
Evaluate \(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y, \int_{0}^{1} \int_{0}^{1} f(x, y) d y d x\) and \(\int_{[0,1]^{2}}|f(x, y)| d(x, y)\) if
(a) \(\left(x-\frac{1}{2}ight)^{-3} \mathbb{1}_{\left\{0 (b) \(\frac{x-y}{\left(x^{2}+y^{2}ight)^{3 / 2}}\); (c) \(\frac{1}{(1-x y)^{p}}, p>0\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: