Let (f: X ightarrow mathbb{R}) be a positive simple function of the form (f(x)=sum_{n=1}^{m} xi_{n} mathbb{1}_{A_{n}}(x), xi_{n}

Question:

Let \(f: X ightarrow \mathbb{R}\) be a positive simple function of the form \(f(x)=\sum_{n=1}^{m} \xi_{n} \mathbb{1}_{A_{n}}(x), \xi_{n} \geqslant 0\), \(A_{n} \in \mathscr{A}\) - but not necessarily disjoint. Show that \(I_{\mu}(f)=\sum_{n=1}^{m} \xi_{n} \mu\left(A_{n}ight)\).

[use additivity and positive homogeneity of \(I_{\mu}\).]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: