Solve the equations of motion using the Laplace transform approach: (a) (ddot{y}+2 dot{y}+3 y=5 cos 3 t,

Question:

Solve the equations of motion using the Laplace transform approach:

(a) \(\ddot{y}+2 \dot{y}+3 y=5 \cos 3 t, y(0)=3, \dot{y}(0)=4\)

(b) \(4 \ddot{y}+5 \dot{y}+5 y=4 u(t), y(0)=1, \dot{y}(0)=1\), where \(u(t)\) is the unit step function

(c) \(3 \ddot{y}+3 \dot{y}+6 y=3 e^{-t}+2 \cos 3 t, y(0)=2, \dot{y}(0)=4\)

(d) \(\ddot{y}+\dot{y}+y=F(t), y(0)=0, \dot{y}(0)=0\), where \(F(t)\) is given by a square wave function with maximum amplitude 1 and period 1

(e) \(\ddot{y}+2 \dot{y}+3 y=\cos 3 t+\cos 5 t, y(0)=0, \dot{y}(0)=0\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Mechanical Vibration Analysis, Uncertainties, And Control

ISBN: 9781498753012

4th Edition

Authors: Haym Benaroya, Mark L Nagurka, Seon Mi Han

Question Posted: