We shall consider only the Heisenberg model; the study of the Ising model is somewhat simpler. Following

Question:

We shall consider only the Heisenberg model; the study of the Ising model is somewhat simpler. Following the procedure of Problem 12.7, we find that the "effective field" \(\mathbf{H}_{a}\) experienced by any given spin \(\mathbf{s}\) on the sublattice \(a\) would be

\[
\begin{equation*}
\mathbf{H}_{a}=\mathbf{H}-\frac{2 q^{\prime} J^{\prime}}{g \mu_{B}} \overline{\mathbf{s}}_{b}-\frac{2 q J}{g \mu_{B}} \overline{\mathbf{s}}_{a} \tag{1a}
\end{equation*}
\]

where \(q^{\prime}\) and \(q\) are, respectively, the number of nearest neighbors on the other and on the same sub-lattice, while \(J^{\prime}\) and \(J\) are the magnitudes of the corresponding interaction energies. Similarly,

\[
\begin{equation*}
\mathbf{H}_{b}=\mathbf{H}-\frac{2 q^{\prime} J^{\prime}}{g \mu_{B}} \overline{\mathbf{s}}_{a}-\frac{2 q J}{g \mu_{B}} \overline{\mathbf{s}}_{b} \tag{1b}
\end{equation*}
\]

The net magnetization, per unit volume, of the sub-lattices \(a\) and \(b\) at high temperatures is then given by, see eqns. (2) and (3) of the preceding problem,

\[
\begin{aligned}
& \mathbf{M}_{a} \equiv \frac{1}{2} n\left(g \mu_{B} \overline{\mathbf{s}}_{a}\right) \approx \frac{1}{2} n \cdot \frac{g^{2} \mu_{B}^{2} s(s+1)}{3 k T}\left\{\mathbf{H}-\frac{4 q^{\prime} J^{\prime}}{n g^{2} \mu_{B}^{2}} \mathbf{M}_{b}-\frac{4 q J}{n g^{2} \mu_{B}^{2}} \mathbf{M}_{a}\right\}, \\
& \mathbf{M}_{b} \equiv \frac{1}{2} n\left(g \mu_{B} \overline{\mathbf{s}}_{b}\right) \approx \frac{1}{2} n \cdot \frac{g^{2} \mu_{B}^{2} s(s+1)}{3 k T}\left\{\mathbf{H}-\frac{4 q^{\prime} J^{\prime}}{n g^{2} \mu_{B}^{2}} \mathbf{M}_{a}-\frac{4 q J}{n g^{2} \mu_{B}^{2}} \mathbf{M}_{b}\right\} .
\end{aligned}
\]

Adding these two results, we obtain for the total magnetization of the lattice

\[
\begin{equation*}
\mathbf{M} \approx \frac{C}{T}\left\{\mathbf{H}-\left(\gamma^{\prime}+\gamma\right) \mathbf{M}\right\} \quad\left[\gamma^{\prime}=\frac{2 q^{\prime} J^{\prime}}{n g^{2} \mu_{B}^{2}}, \gamma=\frac{2 q J}{n g^{2} \mu_{B}^{2}}\right] \tag{2}
\end{equation*}
\]

the parameter \(C\) here is the same as defined in eqn. (5) of the preceding problem. Equation (2) may be written in the form

\[
\begin{equation*}
\mathbf{M} \approx \frac{C}{T+\theta} \mathbf{H}, \text { where } \theta=\left(\gamma^{\prime}+\gamma\right) C \tag{3}
\end{equation*}
\]

this yields the desired result for the paramagnetic susceptibility of the lattice. Note that the parameter \(\theta\) here has no direct bearing on the onset of a phase transition in the system; for that, we must examine the possibility of spontaneous magnetization in the two sub-lattices.

To study the possibility of spontaneous magnetization, we let \(\mathbf{H} \rightarrow 0\); in that limit, the vectors \(\mathbf{M}_{a}\) and \(\mathbf{M}_{b}\) are equal in magnitude but opposite in direction. We may then write: \(\mathbf{M}_{a}=\mathbf{M}^{*}, \mathbf{M}_{b}=-\mathbf{M}^{*}\), and study only the former. In analogy with eqn. (6) of the preceding problem, we now have

\[
\begin{equation*}
M^{*}=\frac{1}{2} n\left(g \mu_{B} s\right) B_{s}\left(x_{0}\right) \quad\left[x_{0}=\frac{4 s\left(q^{\prime} J^{\prime}-q J\right) M^{*}}{n g \mu_{B} k T}\right] . \tag{4}
\end{equation*}
\]

We now employ expansion (7) of the preceding problem and get

\[
\begin{equation*}
M^{*}=\frac{T_{N}}{T} M^{*}-\frac{b}{\left(\frac{1}{2} n g \mu_{B} s \right)^{2}}\left(\frac{T_{N}}{T} M^{*}\right)^{3}+\ldots \tag{5}
\end{equation*}
\]

where

\[
\begin{equation*}
T_{N}=\frac{2 s(s+1)}{3 k}\left(q^{\prime} J^{\prime}-q Jght), \tag{6}
\end{equation*}
\]

while the number \(b\) is the same as given by eqn. (9) of the preceding problem. Clearly, for \(Tq J\), the physical reason for which is not difficult to understand.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: