Consider the system of equations (a) Calculate the eigenvalues and eigenvectors. (b) Using matrix diagonalization, obtain (analytically)

Question:

Consider the system of equationsdy1 dt dy2 dt = y2 -2y1 - 3y2

(a) Calculate the eigenvalues and eigenvectors.

(b) Using matrix diagonalization, obtain (analytically) the solution of the equations for y1(0) = y2(0) = 1.

(c) How does the solution behave for large t? Is this consistent with your eigenvalue analysis? Explain.

(d) Suppose you were using explicit Euler to integrate the system numerically. What would be the maximum integration step size to guarantee numerical stability? Explain.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: