Let (left(B_{t}ight)_{t geqslant 0}) be a (mathrm{BM}^{1}, alpha>0) and consider the stochastic process (X_{t}:=e^{-alpha t / 2}
Question:
Let \(\left(B_{t}ight)_{t \geqslant 0}\) be a \(\mathrm{BM}^{1}, \alpha>0\) and consider the stochastic process \(X_{t}:=e^{-\alpha t / 2} B_{e^{\alpha t}}, t \geqslant 0\).
a) Determine \(m(t)=\mathbb{E} X_{t}\) and \(C(s, t)=\mathbb{E}\left(X_{s} X_{t}ight), s, t \geqslant 0\).
b) Find the probability density of \(\left(X_{t_{1}}, \ldots, X_{t_{n}}ight)\) where \(0 \leqslant t_{1}<\cdots
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Brownian Motion A Guide To Random Processes And Stochastic Calculus De Gruyter Textbook
ISBN: 9783110741254
3rd Edition
Authors: René L. Schilling, Björn Böttcher
Question Posted: