Show that, modulo some discrete symmetries, (U(n)) can be split up into (S U(n)) times a group

Question:

Show that, modulo some discrete symmetries, \(U(n)\) can be split up into \(S U(n)\) times a group \(U(1)\) of complex phases \(e^{i \alpha}\) (and show that these phases do form a group).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: