Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

2. Extend the class linkedListType by adding the following operations: a. Find and delete the node with the smallest info in the list. (Delete only

2. Extend the class linkedListType by adding the following operations: a. Find and delete the node with the smallest info in the list. (Delete only the first occurrence and traverse the list only once.) b. Find and delete all occurrences of a given info from the list. (Traverse the list only once.) Add these as abstract functions in the class linkedListType and provide the definitions of these functions in the class unorderedLinkedList. Also write a program to test these functions. This is what was given. Any help is appreciated and please post an output.

arrayListType.h

#pragma once

//***********************************************************

// Author: D.S. Malik

//

// This class specifies the members to implement the basic

// properties of array-based lists.

//***********************************************************

#include

#include

#include "unorderedLinkedList.h"

using namespace std;

template

class arrayListType

{

public:

bool isEmpty() const;

//Function to determine whether the list is empty

//Postcondition: Returns true if the list is empty;

// otherwise, returns false.

bool isFull() const;

//Function to determine whether the list is full.

//Postcondition: Returns true if the list is full;

// otherwise, returns false.

int listSize() const;

//Function to determine the number of elements in the list

//Postcondition: Returns the value of length.

int maxListSize() const;

//Function to determine the size of the list.

//Postcondition: Returns the value of maxSize.

void print() const;

//Function to output the elements of the list

//Postcondition: Elements of the list are output on the

// standard output device.

bool isItemAtEqual(int location, const elemType& item) const;

//Function to determine whether the item is the same

//as the item in the list at the position specified by

//Postcondition: Returns true if the list[location]

// is the same as the item; otherwise,

// returns false.

bool insertAt(int location, const elemType& insertItem);

//Function to insert an item in the list at the

//position specified by location. The item to be inserted

//is passed as a parameter to the function.

//Postcondition: Starting at location, the elements of the

// list are shifted down, list[location] = insertItem;,

// and length++;. If the list is full or location is

// out of range, an appropriate message is displayed.

bool insertEnd(const elemType& insertItem);

//Function to insert an item at the end of the list.

//The parameter insertItem specifies the item to be inserted.

//Postcondition: list[length] = insertItem; and length++;

// If the list is full, an appropriate message is

// displayed.

bool removeAt(int location);

//Function to remove the item from the list at the

//position specified by location

//Postcondition: The list element at list[location] is removed

// and length is decremented by 1. If location is out of

// range,an appropriate message is displayed.

bool retrieveAt(int location, elemType& retItem) const;

//Function to retrieve the element from the list at the

//position specified by location.

//Postcondition: retItem = list[location]

// If location is out of range, an appropriate message is

// displayed.

bool replaceAt(int location, const elemType& repItem);

//Function to replace the elements in the list at the

//position specified by location. The item to be replaced

//is specified by the parameter repItem.

//Postcondition: list[location] = repItem

// If location is out of range, an appropriate message is

// displayed.

void clearList();

//Function to remove all the elements from the list.

//After this operation, the size of the list is zero.

//Postcondition: length = 0;

int seqSearch(const elemType& item) const;

//Function to search the list for a given item.

//Postcondition: If the item is found, returns the location

// in the array where the item is found; otherwise,

// returns -1.

bool insert(const elemType& insertItem);

//Function to insert the item specified by the parameter

//insertItem at the end of the list. However, first the

//list is searched to see whether the item to be inserted

//is already in the list.

//Postcondition: list[length] = insertItem and length++

// If the item is already in the list or the list

// is full, an appropriate message is displayed.

bool remove(const elemType& removeItem);

//Function to remove an item from the list. The parameter

//removeItem specifies the item to be removed.

//Postcondition: If removeItem is found in the list,

// it is removed from the list and length is

// decremented by one.

arrayListType(int size = 100);

//constructor

//Creates an array of the size specified by the

//parameter size. The default array size is 100.

//Postcondition: The list points to the array, length = 0,

// and maxSize = size

protected:

unorderedLinkedList list; //array to hold the list elements

int maxSize; //to store the maximum size of the list

};

template

bool arrayListType::isEmpty() const

{

return list.isEmptyList();

}

template

bool arrayListType::isFull() const

{

return list.length() >= maxSize;

}

template

int arrayListType::listSize() const

{

return list.length();

}

template

int arrayListType::maxListSize() const

{

return maxSize;

}

template

void arrayListType::print() const

{

list.print();

}

template

bool arrayListType::isItemAtEqual(int location, const elemType& item) const

{

if (location < 0 || list.length() <= locaton)

return false;

linkedListIterator it = list.begin();

while (location > 0)

{

++it;

location--;

}

return item == it->info;

}

template

bool arrayListType::insertAt(int location, const elemType& insertItem)

{

if (isFull()) return false;

return list.insertAt(location, insertItem);

} //end insertAt

template

bool arrayListType::insertEnd(const elemType& insertItem)

{

if (isFull()) return false;

list.insertLast(insertItem);

return true;

} //end insertEnd

template

bool arrayListType::removeAt(int location)

{

return list.deleteAt(location);

} //end removeAt

template

bool arrayListType::retrieveAt(int location, elemType& retItem) const

{

return list.retrieveAt(location, retItem);

} //end retrieveAt

template

bool arrayListType::replaceAt(int location, const elemType& repItem)

{

return list.replaceAt(location, repItem);

} //end replaceAt

template

void arrayListType::clearList()

{

list.destroyList();

} //end clearList

template

int arrayListType::seqSearch(const elemType& item) const

{

return list.search(item);

} //end seqSearch

template

bool arrayListType::insert(const elemType& insertItem)

{

if (isFull()) return false;

return list.insertLast(insertItem);

} //end insert

template

bool arrayListType::remove(const elemType& removeItem)

{

return list.deleteNode(removeItem);

} //end remove

template

arrayListType::arrayListType(int size)

{

if (size <= 0) size = 100;

maxSize = size;

}

linkedList.h

#pragma once

#include

#include

using namespace std;

//Definition of the node

template

struct nodeType

{

Type info;

nodeType *link;

};

//***********************************************************

// Author: D.S. Malik

//

// This class specifies the members to implement an iterator

// to a linked list.

//***********************************************************

template

class linkedListIterator

{

public:

linkedListIterator();

//Default constructor

//Postcondition: current = NULL;

linkedListIterator(nodeType *ptr);

//Constructor with a parameter.

//Postcondition: current = ptr;

Type operator*();

//Function to overload the dereferencing operator *.

//Postcondition: Returns the info contained in the node.

linkedListIterator operator++();

//Overload the preincrement operator.

//Postcondition: The iterator is advanced to the next node.

bool operator==(const linkedListIterator& right) const;

//Overload the equality operator.

//Postcondition: Returns true if this iterator is equal to

// the iterator specified by right, otherwise it returns

// false.

bool operator!=(const linkedListIterator& right) const;

//Overload the not equal to operator.

//Postcondition: Returns true if this iterator is not equal to

// the iterator specified by right, otherwise it returns

// false.

private:

nodeType *current; //pointer to point to the current

//node in the linked list

};

template

linkedListIterator::linkedListIterator()

{

current = NULL;

}

template

linkedListIterator::linkedListIterator(nodeType *ptr)

{

current = ptr;

}

template

Type linkedListIterator::operator*()

{

return current->info;

}

template

linkedListIterator linkedListIterator::operator++()

{

current = current->link;

return *this;

}

template

bool linkedListIterator::operator==(const linkedListIterator& right) const

{

return (current == right.current);

}

template

bool linkedListIterator::operator!=(const linkedListIterator& right) const

{

return (current != right.current);

}

//***********************************************************

// Author: D.S. Malik

//

// This class specifies the members to implement the basic

// properties of a linked list. This is an abstract class.

// We cannot instantiate an object of this class.

//***********************************************************

template

class linkedListType

{

public:

const linkedListType& operator= (const linkedListType&);

//Overload the assignment operator.

void initializeList();

//Initialize the list to an empty state.

//Postcondition: first = NULL, last = NULL, count = 0;

bool isEmptyList() const;

//Function to determine whether the list is empty.

//Postcondition: Returns true if the list is empty, otherwise

// it returns false.

void print() const;

//Function to output the data contained in each node.

//Postcondition: none

int length() const;

//Function to return the number of nodes in the list.

//Postcondition: The value of count is returned.

void destroyList();

//Function to delete all the nodes from the list.

//Postcondition: first = NULL, last = NULL, count = 0;

Type front() const;

//Function to return the first element of the list.

//Precondition: The list must exist and must not be empty.

//Postcondition: If the list is empty, the program terminates;

// otherwise, the first element of the list is returned.

Type back() const;

//Function to return the last element of the list.

//Precondition: The list must exist and must not be empty.

//Postcondition: If the list is empty, the program

// terminates; otherwise, the last

// element of the list is returned.

virtual int search(const Type& searchItem) const = 0;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the list,

// otherwise the value false is returned.

virtual void insertFirst(const Type& newItem) = 0;

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the beginning of the list, last points to

// the last node in the list, and count is incremented by 1.

virtual void insertLast(const Type& newItem) = 0;

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the end of the list, last points to the

// last node in the list, and count is incremented by 1.

virtual bool deleteNode(const Type& deleteItem) = 0;

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing deleteItem is

// deleted from the list. first points to the first node,

// last points to the last node of the updated list, and

// count is decremented by 1.

linkedListIterator begin();

//Function to return an iterator at the beginning of the linked list.

//Postcondition: Returns an iterator such that current is set to first.

linkedListIterator end();

//Function to return an iterator one element past the last element of the linked list.

//Postcondition: Returns an iterator such that current is set to NULL.

linkedListType();

//default constructor

//Initializes the list to an empty state.

//Postcondition: first = NULL, last = NULL, count = 0;

linkedListType(const linkedListType& otherList);

//copy constructor

~linkedListType();

//destructor

//Deletes all the nodes from the list.

//Postcondition: The list object is destroyed.

protected:

int count; //variable to store the number of list elements

//

nodeType *first; //pointer to the first node of the list

nodeType *last; //pointer to the last node of the list

private:

void copyList(const linkedListType& otherList);

//Function to make a copy of otherList.

//Postcondition: A copy of otherList is created and assigned

// to this list.

};

template

bool linkedListType::isEmptyList() const

{

return (first == NULL);

}

template

linkedListType::linkedListType() //default constructor

{

first = NULL;

last = NULL;

count = 0;

}

template

void linkedListType::destroyList()

{

nodeType *temp; //pointer to deallocate the memory

//occupied by the node

while (first != NULL) //while there are nodes in the list

{

temp = first; //set temp to the current node

first = first->link; //advance first to the next node

delete temp; //deallocate the memory occupied by temp

}

last = NULL; //initialize last to NULL; first has already

//been set to NULL by the while loop

count = 0;

}

template

void linkedListType::initializeList()

{

destroyList(); //if the list has any nodes, delete them

}

template

void linkedListType::print() const

{

nodeType *current; //pointer to traverse the list

current = first; //set current so that it points to

//the first node

while (current != NULL) //while more data to print

{

cout << current->info << " ";

current = current->link;

}

}//end print

template

int linkedListType::length() const

{

return count;

} //end length

template

Type linkedListType::front() const

{

assert(first != NULL);

return first->info; //return the info of the first node

}//end front

template

Type linkedListType::back() const

{

assert(last != NULL);

return last->info; //return the info of the last node

}//end back

template

linkedListIterator linkedListType::begin()

{

linkedListIterator temp(first);

return temp;

}

template

linkedListIterator linkedListType::end()

{

linkedListIterator temp(NULL);

return temp;

}

template

void linkedListType::copyList(const linkedListType& otherList)

{

nodeType *newNode; //pointer to create a node

nodeType *current; //pointer to traverse the list

if (first != NULL) //if the list is nonempty, make it empty

destroyList();

if (otherList.first == NULL) //otherList is empty

{

first = NULL;

last = NULL;

count = 0;

}

else

{

current = otherList.first; //current points to the list to be copied

count = otherList.count;

//copy the first node

first = new nodeType; //create the node

first->info = current->info; //copy the info

first->link = NULL; //set the link field of the node to NULL

last = first; //make last point to the first node

current = current->link; //make current point to the next node

//copy the remaining list

while (current != NULL)

{

newNode = new nodeType; //create a node

newNode->info = current->info; //copy the info

newNode->link = NULL; //set the link of newNode to NULL

last->link = newNode; //attach newNode after last

last = newNode; //make last point to the actual last node

current = current->link; //make current point to the next node

}//end while

}//end else

}//end copyList

template

linkedListType::~linkedListType() //destructor

{

destroyList();

}//end destructor

template

linkedListType::linkedListType(const linkedListType& otherList)

{

first = NULL;

copyList(otherList);

}//end copy constructor

//overload the assignment operator

template

const linkedListType& linkedListType::operator=(const linkedListType& otherList)

{

if (this != &otherList) //avoid self-copy

copyList(otherList);

return *this;

}

unorderedLinkedList.h

#pragma once

//***********************************************************

// Author: D.S. Malik

//

// This class specifies the members to implement the basic

// properties of an unordered linked list. This class is

// derived from the class linkedListType.

//***********************************************************

#include "linkedList.h"

using namespace std;

template

class unorderedLinkedList: public linkedListType

{

public:

int search(const Type& searchItem) const;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the list,

// otherwise the value false is returned.

bool insertAt(int distance, const Type& insertItem);

//Function to insert newItem distance number of nodes from the

//beginning of the list.

//Postcondition: if location is greater than 0 and less than or equal

// to the number nodes in the list then first points to the first

// node, newItem is inserted distance number of nodes from the

// beginning of the list, last points to the last node, count is

// incremented by 1, and the function returns true

// else the function returns false

void insertFirst(const Type& newItem);

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the beginning of the list, last points to

// the last node, and count is incremented by 1.

//

void insertLast(const Type& newItem);

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the end of the list, last points to the

// last node, and count is incremented by 1.

bool deleteNode(const Type& deleteItem);

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing deleteItem

// is deleted from the list. first points to the first

// node, last points to the last node of the updated

// list, and count is decremented by 1.

bool deleteAt(int distance);

//Function to delete an item at a given distance from the list.

//Postcondition: If the distance is good, the node

// is deleted from the list. first points to the first

// node, last points to the last node of the updated

// list, and count is decremented by 1.

bool retrieveAt(int location, Type& retItem) const;

//Function to retrieve the element from the list at the

//position specified by location.

//Postcondition: retItem = list[location]

// If location is in range, function returns true

// else function returns false.

bool replaceAt(int location, const Type& repItem);

//Function to replace the element in the list at the

//position specified by location. The item to be replaced

//is specified by the parameter repItem.

//Postcondition: list node's item at location = repItem

// and function returns true.

//If location is out of range, function return false

};

template

bool unorderedLinkedList::replaceAt(int location, const Type& repItem)

{

if (location < 0 || count <= location) return false;

nodeType*current = first;

while (location > 0)

{

current = current->link;

location--;

}

current->info = repItem;

return true;

}

template

bool unorderedLinkedList::retrieveAt(int location, Type& retItem) const

{

if (location < 0 || count <= location) return false;

nodeType* current = first;

while (location > 0)

{

current = current->link;

location--;

}

retItem = current->info;

return true;

}

template

bool unorderedLinkedList::insertAt(int distance, const Type& insertItem)

{

if (distance < 0 || count < distance) return false;

nodeType* trailCurrent = NULL;

nodeType* current = first;

while (0 < distance)

{

trailCurrent = current;

current = current->link;

distance--;

}

nodeType* new_node = new nodeType;

new_node->info = insertItem;

new_node->link = NULL;

if (trailCurrent == NULL)

{

new_node->link = first;

first = new_node;

if (count == 0) last = first;

}

else if (trailCurrent == last)

{

trailCurrent->link = new_node;

last = new_node;

}

else

{

new_node->link = trailCurrent->link;

trailCurrent->link = new_node;

}

++count;

return true;

}

template

bool unorderedLinkedList::deleteAt(int distance)

{

if (distance < 0 || length() <= distance) return false;

nodeType *trailCurrent = NULL;

nodeType *current = first;

while (distance > 0)

{

trailCurrent = current;

current = current->link;

distance--;

}

if (current == first)

first = current->link;

else if (current == last)

{

last = trailCurrent;

last->link = NULL;

}

else

trailCurrent->link = current->link;

delete current;

count--;

if (count == 0)

first = last = NULL;

return true;

}

template

int unorderedLinkedList::search(const Type& searchItem) const

{

nodeType *current; //pointer to traverse the list

int distance = 0;

bool found = false;

current = linkedListType::first; //set current to point to the

// first node in the list

while (current != NULL && current->info != searchItem) //search the list

{

current = current->link; //make current point to

distance++;

}

if (current != NULL)

return distance;

else

return -1;

}//end search

template

void unorderedLinkedList::insertFirst(const Type& newItem)

{

nodeType *newNode; //pointer to create the new node

newNode = new nodeType; //create the new node

newNode->info = newItem; //store the new item in the node

newNode->link = first; //insert newNode before first

first = newNode; //make first point to the actual first node

count++; //increment count

if (last == NULL) //if the list was empty, newNode is also the last node in the list

last = newNode;

}//end insertFirst

template

void unorderedLinkedList::insertLast(const Type& newItem)

{

nodeType *newNode; //pointer to create the new node

newNode = new nodeType; //create the new node

newNode->info = newItem; //store the new item in the node

newNode->link = NULL; //set the link field of newNode

//to NULL

if (first == NULL) //if the list is empty, newNode is

//both the first and last node

{

first = newNode;

last = newNode;

count++; //increment count

}

else //the list is not empty, insert newNode after last

{

last->link = newNode; //insert newNode after last

last = newNode; //make last point to the actual

//last node in the list

count++; //increment count

}

}//end insertLast

template

bool unorderedLinkedList::deleteNode(const Type& deleteItem)

{

nodeType *current; //pointer to traverse the list

nodeType *trailCurrent; //pointer just before current

bool found = true;

if (first == NULL) //Case 1; the list is empty.

return false;

else

{

if (first->info == deleteItem) //Case 2

{

current = first;

first = first->link;

count--;

if (first == NULL) //the list has only one node

last = NULL;

delete current;

}

else //search the list for the node with the given info

{

found = false;

trailCurrent = first; //set trailCurrent to point to the first node

current = first->link; //set current to point to the second node

while (current != NULL && !found)

{

if (current->info != deleteItem)

{

trailCurrent = current;

current = current-> link;

}

else

found = true;

}//end while

if (found) //Case 3; if found, delete the node

{

trailCurrent->link = current->link;

count--;

if (last == current) //node to be deleted was the last node

last = trailCurrent; //update the value

//of last

delete current; //delete the node from the list

}

else

found = false;

}//end else

}//end else

return found;

}//end deleteNode

source.cpp

#include

#include

#include

#include

#include "arrayListType.h"

using namespace std;

int main()

{

default_random_engine dre(423);

uniform_int_distribution uid(10, 99);

int size = 16;

uniform_int_distribution uid1(-2, size + 5);

arrayListType a(size);

cout << a.listSize() << '/' << a.maxListSize() << endl;

while (!a.isFull())

{

a.insertEnd(uid(dre));

a.print(); cout << endl;

}

system("pause");

while (!a.isEmpty())

{

a.remove(uid(dre));

a.print(); cout << endl;

}

system("pause");

while (!a.isFull())

{

a.insertAt(uid1(dre), uid(dre));

a.print(); cout << endl;

}

system("pause");

while (!a.isEmpty())

{

a.removeAt(uid1(dre));

a.print(); cout << endl;

}

system("pause");

while (!a.isFull())

{

a.insertEnd(uid(dre));

a.print(); cout << endl;

}

system("pause");

for (int i = 0; i < a.maxListSize(); ++i)

{

a.replaceAt(i, i + 10);

a.print(); cout << endl;

}

system("pause");

cout << a.listSize() << '/' << a.maxListSize() << endl;

a.clearList();

cout << a.listSize() << '/' << a.maxListSize() << endl;

while (!a.isFull())

{

a.insertAt(uid1(dre), uid(dre));

a.print(); cout << endl;

}

system("pause");

for (int i = 0; i < a.listSize() / 2; ++i)

{

int t1, t2;

a.retrieveAt(i, t1);

a.retrieveAt(a.listSize() - i - 1, t2);

a.replaceAt(a.listSize() - i - 1, t1);

a.replaceAt(i, t2);

a.print(); cout << endl;

}

cout << a.listSize() << '/' << a.maxListSize() << endl;

a.clearList();

cout << a.listSize() << '/' << a.maxListSize() << endl;

system("pause");

return 0;

}

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Databases questions

Question

What is the basis for Security Concerns in Cloud Computing?

Answered: 1 week ago

Question

Describe the three main Cloud Computing Environments.

Answered: 1 week ago