Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

4. Solve the following using variation of parameter. (15 points) y ty = exsin (x) step 1 : Homogeneous solution + 9 : + E

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
4. Solve the following using "variation of parameter." (15 points) y" ty = exsin (x) step 1 : Homogeneous solution + 9 : + E r= -0 62- 4(12(17 = 2 ( 1 ] 2 r= oti 2 + Bi d = 0 Cost Sinx r= o-i Q - BI B - sinx cosx 41 = cos( X ) yz = sin(x ) w (y , , 4 2 ) = 17 0 Uh = CI cos ( x) + cz sin (x ) Step 2: particular solution using "variation of parameter" Up = uisin (x ) + uzcos (x) yp' = ui sin ( x ) + UIcos ( x ) + uz cos ( x) - uzSin (x ) Assume : hisin ( x ) + uz cos ( x ) = 0 Up = UIcos ( x) - uzsin(x) Up " = ui cosix ) - uisin (x ) - uz sincx) - uzcos (x)4" + y = ex sincx ) hi cos (x ) - usin (x ) - uz sin (x ) - 12tos(x ) + uisintx ] + uzcostx ) = ex sincx ) UI cosx - uz sin ( x) = ex sincx) hisin ( x ) + uz cos(x ) = 0 UI cosx - Uzsin (x) = ex sin(x) hisin( x ) + us fin (x ) . cos(x ) = 0 UI cos(x ) - ux fin(x ) . cos(x ) = ex sin ( x ) cos ( x ) UI ' [ sing ? ( x ) + Cos = ( x ) ] = ex sin ( x ) cos(x ) U = ex sin ( x ) cos ( x) u = ex sin ( x ) cos ( x ) d x = 2 ex sin (zx ) dx Computer = 5 er cos (2 x ) + 10 ex sin (2x )UI SHATX ) LOS( X ) + 42 cos ( x ) = - u , sintx ) Cos ( x ) + 4 2 sin ( x ) = - ex sin ( x ) U2 [ cos ( x ) + sin "(x ) J = - ex sin?(x ) U2 = - ex sin? (x ) U2 = - ex sin ? ( x ) dx Computer = -exsin?(x) - - ex s (2x) + ex sin (2x) yp = uIsin ( x ) + uzcos ( x ) yP - 5 e * cos 12 x ) + 10 e " sin (2 x ) sin ( x ) + - exsin ? ( x ) - els ( 2 x ) + ex sin ( 2x ) . cos( * ) - $ ex (2605() - 1 ) + (25in(x) cos(x ) . sin (x ) + - exsin ? (x ) - ex ( 1 - 2 sin x ) ) . cos ( x ) 1 5 ex 2 sin ( * ) cos ( x ) . (5 ( x )= 2 ex sintx ) los ( x ) + 5 ex sin ( x ) 5 ex sintx , Cos( x ) - ex sinful Cos( x ) 5 ex cos( x ) + ex sintx ) cos( x ) + 2 ex sintx ) cos (x ) 5 ex sin ( x ) - ex cs ( x ) step 3 : General solution : y = yu + up = CI COS ( X ) + C z Sin ( x) + ex sin (x) - - ex cos (x)f0 Solve the following differential equation (nd the general solution) using the method of \"Variation of Parameter". Show all your work. You must use variation of parameter if you use any other method. you will get no credit. (10 points) '//_2'/ ,2 ' y y+y 1+t'3 You cannot use any formula for the variation of parameters. You must do the way we did in the class. Make sure to review and rewatch the recorded video on this topic before proceeding. If you use any formula, you will get 0

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Complex Variables And Applications

Authors: James Brown, Ruel Churchill

9th Edition

0073530859, 9780073530857

More Books

Students also viewed these Mathematics questions

Question

7. How can an interpreter influence the utterer (sender)?

Answered: 1 week ago