Question
4. The number of electrical outages in a town varies from day to day. Assume that this daily number has the following probability distribution. x
4.The number of electrical outages in a town varies from day to day. Assume that this daily number has the following probability distribution.
x | f(x) |
0 | 0.80 |
1 | 0.15 |
2 | 0.04 |
3 | 0.01 |
The mean and the standard deviation for the daily number of electrical outages (respectively) are
a. | 2.6 and 5.77 |
b. | 0.26 and 0.577 |
c. | 3 and 0.01 |
d. | 0 and 0.8 |
ANS:B
5.Which of the following is not a property of a binomial experiment?
a. | The experiment consists of a sequence of n identical trials |
b. | For each trial, there are two possible outcomes called success and failure |
c. | the probabilities of getting success and failure can change from one trial to the next |
d. | the trials are independent |
ANS:C
26
6.A probability distribution showing the probability of x successes in n independent trials, where the probability of success does not change from trial to trial, is termed a
a. | uniform probability distribution |
b. | binomial probability distribution |
c. | hyper-geometric probability distribution |
d. | normal probability distribution |
ANS:B
7.The mean and the standard deviation of a binomial distribution are
a. | and |
b. | and = np |
c. | = np and = np(1 - p) |
d. | None of these alternatives is correct |
ANS:D
8.40% of Chicago workers use public transportation daily. For a sample of 50 workers, what is the expected value and the variance of the number of workers who use public transportation daily.
a. | 20 workers and 3.46 workers, respectively |
b. | 20 workers and 12 (worker)2, respectively |
c. | 12 workers and 20 (worker)2, respectively |
d. | 40 workers and 50 workers, respectively |
ANS:B
9.Four percent of the customers of a mortgage company default on their payments. A sample of five customers is selected. What is the probability that exactly two customers in the sample will default on their payments?
a. | 0.2592 |
b. | 0.0142 |
c. | 0.9588 |
d. | 0.7408 |
ANS:B
Exhibit 5-1
The student body of a large university consists of 60% female students. A random sample of 8 students is selected.
27
10.Refer to Exhibit 5-1. What is the expected number of female students in the sample?
a. | 6.0 |
b. | 4.8 |
c. | 3.2 |
d. | 8.0 |
ANS:B
11.Refer to Exhibit 5-1. What is the standard deviation of the number of female students in the sample?
a. | 1.386 |
b. | 1.920 |
c. | 4.804 |
d. | 6.085 |
ANS:A
12.Refer to Exhibit 5-1. What is the probability that among the 8 students exactly two are female?
a. | 0.0896 |
b. | 0.2936 |
c. | 0.0413 |
d. | 0.0007 |
ANS:C
13.Refer to Exhibit 5-1. What is the probability that among the 8 students at least 7 are female?
a. | 0.1064 |
b. | 0.0896 |
c. | 0.0168 |
d. | 0.8936 |
ANS:A
14.Refer to Exhibit 5-1. What is the probability that among the 8 students at least 6 are male?
a. | 0.0413 |
b. | 0.0079 |
c. | 0.0007 |
d. | 0.0499 |
ANS:D
PROBLEMS
A financial analyst has constructed the following probability distribution for a firm predicted percent return for the upcoming year.
Return x | Probability f(x) |
28
-5% | 0.20 |
0% | 0.30 |
5% | 0.40 |
10% | 0.10 |
What is the expected value of the return?
What is the standard deviation of the return?
ANS:
= 2, that is, 2%
The variance is 2 = 21, that is 21(%)2. So, the standard deviation is , that is, 4.58%.
5-2.The demand for a product varies from month to month. Based on the past year's data, the following probability distribution describes the monthly demand for a product.
x | f(x) |
Unit Demand | Probability |
0 | 0.10 |
1,000 | 0.10 |
2,000 | 0.30 |
3,000 | 0.40 |
4,000 | 0.10 |
a. | Determine the expected number of units demanded per month. |
b. | Each unit produced costs the company $8, and is sold for $10. How much will the company gain or lose in a month if they produce the expected number of units demanded, but sell 2000 units? |
ANS:
a. | 2300 |
b. | Profit = 2000($10) 2300($8) = $1600 |
5-3.Seventy percent of the students applying to a university are accepted. Eighteen applications are now under review.
a. | What is the probability that exactly 10 will be accepted? |
b. | What is the probability that exactly 5 will be rejected? |
c. | What is the probability that at least 7 will be accepted? |
d. | What is the probability that more than 15 will be accepted? |
e. | What is the expected number of the accepted applications? |
f. | What is the standard deviation of the number of accepted applications? |
ANS:
a. | 0.0811 |
b. | 0.2017 |
29
c. | 0.9986 |
d. | 0.06 |
e. | 12.6 |
f. | 1.9442 |
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started