Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Time spent using e-mail per session is normally distributed, with mu equals =13 minutes and sigma equals =2 minutes. Complete parts (a) through (d). a.

Time spent using e-mail per session is normally distributed, with mu equals μ=13 minutes and sigma equals σ=2 minutes. 

Complete parts (a) through (d). 

a. If you select a random sample of 50sessions, what is the probability that the sample mean is between 12.8 and 13.2 minutes? 

b. If you select a random sample of 50sessions, what is the probability that the sample mean is between 12.5 and 13 minutes? 

c. If you select a random sample of 100sessions, what is the probability that the sample mean is between 12.8 and 13.2 minutes? 

d. Explain the difference in the results of (a) and (c). 

Choose the correct answer below. The sample size in (c) is greater than the sample size in (a), so the standard error of the mean (or the standard deviation of the samplingdistribution) in (c) is ▼ less greater than in (a). As the standard deviation ▼ increases decreases , values become ▼ less more concentrated around the mean. Therefore, the probability of a region that includes the mean will always ▼ decrease increase when the sample size increases.

Step by Step Solution

3.37 Rating (153 Votes )

There are 3 Steps involved in it

Step: 1

Answers to questions from a to d The Z tables I used are here For Z z positive For Z z negati... blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Introduction To Probability And Statistics

Authors: William Mendenhall, Robert Beaver, Barbara Beaver

14th Edition

1133103758, 978-1133103752

More Books

Students also viewed these Mathematics questions