Question: Boyd, Delost and Holcomb (1998) conducted a study to determine if significant gender differences existed in the mean amount of calcium levels in the blood
Boyd, Delost and Holcomb (1998) conducted a study to determine if significant gender differences existed in the mean amount of calcium levels in the blood among subjects 65 years of age and older. The researchers performed a retrospective chart review of laboratory procedures performed in six different physician practices. The nonmissing data consisted of 176 subjects. The variables collected were SEX (1=male, 2=female), LAB (lab where blood was analyzed; 1=Metpath, 2=Deyor, 3=St. Elizabeth's, 4=CB Rouche, 5=YOH, 6=Horizon), AGE (years), AKPHOS (alkaline phosphatase, IU/L), and CAMMOL (raw calcium, mmol/L). Using a 0.05 significance level and the given computer output, you now need to test the claim that the patients in the six physician practices (or labs) have different mean calcium levels by answering the questions that follow.
For questions 1-5, Match the output with the most appropriate analysis. select each letter (method) more than once, once or not at all.
(1 point each)
1. SAS Output #1 a. One-way ANOVA
2. SAS Output #2 b. Two-way ANOVA with an interaction
3. SAS Output #3 c. Two-way ANOVA without an interaction
4. SAS Output #4 d. ANCOVA
5. SAS Output #5 e. Multiple linear regression
2
For questions 6-22, refer to SAS Output #1.
6. What are the omnibus null and alternative hypotheses? (1 point)
a. H0: 1 = 2 = 3 = 4 = 5 = 6 = 0, H1: at least one i 0
b. H0: y1 = y2 = y3 = y4 = y5 = y6, H1: y1 y2 y3 y4 y5 y6
c. H0: 1 = 2 = 3 = 4 = 5 = 6, H1: 1 2 3 4 5 6
d. H0: y1 = y2 = y3 = y4 = y5 = y6, H1: at least one yi differs from another yj
e. H0: 1 = 2 = 3 = 4 = 5 = 6, H1: at least one i differs from another j
7. What are the independent and dependent variables? (1 point)
a. Dependent = calcium level, independent = sex
b. Dependent = sex, independent = calcium level
c. Dependent = calcium level, independent = lab
d. Dependent = lab, independent = calcium level
e. Cannot be determined from the given information.
For questions 8-14 refer to the following: In the first table of SAS Output #1, several important values have been replaced with the letters A-G. find these missing values.
8. Model Degrees of Freedom (labeled A) (0.5 point)
a. 1
b. 4
c. 5
d. 6
e. 7
9. Error Degrees of Freedom (labeled B) (0.5 point)
a. 169
b. 170
c. 171
d. 174
e. 175
10. Total Degrees of Freedom (labeled C) (0.5 point)
a. 170
b. 173
c. 174
d. 175
e. 176
3
11. Sum of Square Error (labeled D) (0.5 point)
a. 0.14
b. 1.28
c. 2.78
d. 3.73
e. 6.90
12. Mean Square Model (labeled E) (0.5 point)
a. 0.067
b. 0.079
c. 0.094
d. 0.12
e. 0.47
13. Mean Square Error (labeled F) (0.5 point)
a. 0.016
b. 0.16
c. 0.98
d. 1.47
e. 2.78
14. t test statistic (labeled G) (0.5 point)
a. 0.062
b. 0.085
c. 0.18
d. 1.36
e. 5.76
15. What is the value of the test statistic for the omnibus null hypothesis H0? (1 point)
a. 0.17
b. 0.20
c. 1.96
d. 5.76
e. 7.92
4
16. What is the p-value corresponding to the test statistic in question (15)? (0.5 point)
a. <0.0001
b. 0.05
c. 0.27
d. 0.41
e. >0.9999
17. Using a 0.05 significance level, what decision and conclusion should you make regarding the omnibus null hypothesis? (1 point)
a. Because p-value < 0.05, we reject H0 and conclude that all of the labs have a significantly different mean calcium level from one another.
b. Because p-value < 0.05, we reject H0 and conclude that at least one lab has a significantly different mean calcium level than the others.
c. Because p-value < 0.05, we fail to reject H0 and conclude that the mean calcium level does not differ significantly between the 4 labs.
d. Because p-value > 0.05, we fail to reject H0 and conclude that the mean calcium level does not differ significantly between the 4 labs.
e. Because p-value > 0.05, we reject H0 and conclude that the mean calcium level does differ significantly between the 4 labs.
18. Assuming you rejected the omnibus null hypothesis in question 17 (this may or may not be true), what test should you conduct next? (1 point)
a. Tukey test
b. Bonferroni test
c. Multiple comparisons test
d. None of the above are appropriate
e. Any of the above are appropriate
19. What is the estimated mean calcium level for each of the six labs? (1 point)
a. 1 = -0.045, 2 = 0.062, 3 = -0.0081, 4 = 0.085, 5 = -0.058, 6 = 0
b. y1 = -0.045, y2 = 0.062, y3 = -0.0081, y4 = 0.085, y5 = -0.058, y6 = 0
c. 1 = -0.045, 2 = 0.062, 3 = -0.0081, 4 = 0.085, 5 = -0.058, 6 = 2.36
d. y1 = -0.045, y2 = 0.062, y3 = -0.0081, y4 = 0.085, y5 = -0.058, y6 = 2.36
e. 1 = 2.32, 2 = 2.42, 3 = 2.35, 4 = 2.45, 5 = 2.30, 6 = 2.36
f. y1 = 2.32, y2 = 2.42, y3 = 2.35, y4 = 2.45, y5 = 2.30, y6 = 2.36
5
20. what if any of the six labs differ significantly in their mean calcium level? If so, which one(s) differ? (1 point)
a. Yes, 1 2
b. Yes, 1 4
c. Yes, 2 5
d. Yes, 4 5
e. All of the above
f. Both a and b
g. No, the six labs have the same mean calcium level.
21. What types of variation, if any, are being analyzed in this problem? (1 point)
a. We are comparing the mean calcium level for 6 groups, which has nothing to do with variation.
b. Variation in calcium level between labs
c. Variation in calcium level within labs
d. Both b and c
e. None of the above
22. Is there a reference cell in this problem? If so, what is it? (1 point)
a. Yes, the reference cell is lab 1.
b. Yes, the reference cell is lab 2.
c. Yes, the reference cell is lab 5.
d. Yes, the reference cell is lab 6.
e. Yes, there is a reference cell but the group cannot be determined with the given output.
f. No, there is no reference cell.
23. Suppose the researchers are interested in comparing the mean calcium level between males and females, adjusted for the patient's age and alkaline phosphatase level. Using the most appropriate model, select which of the following statements is true. (1 point)
a. Mean calcium level differs significantly for sex, age and alkaline phosphatase.
b. Mean calcium level differs significantly for sex and alkaline phosphatase but not age.
c. Mean calcium level differs significantly for age and alkaline phosphatase but not sex.
d. Mean calcium level does not differ significantly between males and females, after adjusting for age and alkaline phosphatase.
e. Mean calcium level differs significantly between males and females, after adjusting for age and alkaline phosphatase.
6
24. The interaction plot below was generated from the model in SAS Output #3. What can you say about the following figure? (1 point)
a. As lab increases, the calcium level decreases at the same rate for both males and females.
b. There is no significant interaction between sex and lab.
c. There is a same direction interaction between sex and lab.
d. There is a reverse interaction between sex and lab.
e. Both a and b
7
OPTIONAL PRACTICE QUESTIONS: The following are optional practice questions that you can work on after you submit your quiz. They will NOT be graded; however, you should be prepared to answer these types of questions on the final exam.
Practice 1: Write out the estimated model given in SAS Output #2.
Practice 2: Write out the estimated model given in SAS Output #3.
Practice 3: Write out the estimated model given in SAS Output #4.
Practice 4: Write out the estimated model given in SAS Output #5. 8
SAS Output #1
Sum of
Source DF Squares Mean Square F Value Pr > F
Model A 0.47191070 E H <.0001
Error B D F
Corrected Total C 3.25679091
R-Square Coeff Var Root MSE CAMMOL Mean
0.144901 5.434330 0.127991 2.355227
Source DF Type III SS Mean Square F Value Pr > F
LAB 5 0.47191070 0.09438214 H <.0001
Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 2.360000000 B 0.05225203 45.17 <.0001
LAB 1 -0.044597701 B 0.05402379 -0.83 0.4102
LAB 2 0.062380952 B 0.05585977 1.12 0.2657
LAB 3 -0.008125000 B 0.06127094 -0.13 0.8947
LAB 4 0.085000000 B 0.06245312 G 0.1753
LAB 5 -0.058181818 B 0.06495780 -0.90 0.3717
LAB 6 0.000000000 B . . .
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
CAMMOL LSMEAN
LAB LSMEAN Number
1 2.31540230 1
2 2.42238095 2
3 2.35187500 3
4 2.44500000 4
5 2.30181818 5
6 2.36000000 6
Least Squares Means for effect LAB
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: CAMMOL
i/j 1 2 3 4 5 6
1 0.0002 0.9010 0.0073 0.9995 0.9625
2 0.0002 0.4211 0.9927 0.0654 0.8739
3 0.9010 0.4211 0.3534 0.9179 1.0000
4 0.0073 0.9927 0.3534 0.0662 0.7501
5 0.9995 0.0654 0.9179 0.0662 0.9471
6 0.9625 0.8739 1.0000 0.7501 0.9471
SAS Output #2
Sum of
Source DF Squares Mean Square F Value Pr > F
Model 6 0.62472682 0.10412114 6.69 <.0001
Error 169 2.63206409 0.01557434
Corrected Total 175 3.25679091 9
R-Square Coeff Var Root MSE CAMMOL Mean
0.191823 5.298733 0.124797 2.355227
Source DF Type III SS Mean Square F Value Pr > F
SEX 1 0.15281612 0.15281612 9.81 0.0020
LAB 5 0.36544303 0.07308861 4.69 0.0005
Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 2.370541395 B 0.05105927 46.43 <.0001
SEX 1 -0.063248370 B 0.02019155 -3.13 0.0020
SEX 2 0.000000000 B . . .
LAB 1 -0.012246523 B 0.05367871 -0.23 0.8198
LAB 2 0.081957829 B 0.05482336 1.49 0.1368
LAB 3 -0.002854302 B 0.05976581 -0.05 0.9620
LAB 4 0.088011827 B 0.06090239 1.45 0.1503
LAB 5 -0.045723806 B 0.06346173 -0.72 0.4722
LAB 6 0.000000000 B . . .
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
H0:LSMean1=
CAMMOL LSMean2
SEX LSMEAN Pr > |t|
1 2.32548386 0.0020
2 2.38873223 10
SAS Output #2 (continued)
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
CAMMOL LSMEAN
LAB LSMEAN Number
1 2.32667069 1
2 2.42087504 2
3 2.33606291 3
4 2.42692904 4
5 2.29319340 5
6 2.33891721 6
Least Squares Means for effect LAB
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: CAMMOL
i/j 1 2 3 4 5 6
1 0.0015 0.9998 0.0806 0.9620 0.9999
2 0.0015 0.2017 1.0000 0.0345 0.6680
3 0.9998 0.2017 0.3528 0.9517 1.0000
4 0.0806 1.0000 0.3528 0.0901 0.6994
5 0.9620 0.0345 0.9517 0.0901 0.9792
6 0.9999 0.6680 1.0000 0.6994 0.9792 11
SAS Output #3
Sum of
Source DF Squares Mean Square F Value Pr > F
Model 11 0.68000807 0.06181892 3.93 <.0001
Error 164 2.57678284 0.01571209
Corrected Total 175 3.25679091
R-Square Coeff Var Root MSE CAMMOL Mean
0.208797 5.322114 0.125348 2.355227
Source DF Type III SS Mean Square F Value Pr > F
SEX 1 0.10766731 0.10766731 6.85 0.0097
LAB 5 0.33628448 0.06725690 4.28 0.0011
SEX*LAB 5 0.05528125 0.01105625 0.70 0.6214
Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 2.386000000 B 0.05605728 42.56 <.0001
SEX 1 -0.156000000 B 0.13731172 -1.14 0.2576
SEX 2 0.000000000 B . . .
LAB 1 -0.022071429 B 0.06085692 -0.36 0.7173
LAB 2 0.048545455 B 0.06210156 0.78 0.4355
LAB 3 -0.031833333 B 0.06672150 -0.48 0.6339
LAB 4 0.082181818 B 0.06760762 1.22 0.2259
LAB 5 -0.030285714 B 0.07339620 -0.41 0.6804
LAB 6 0.000000000 B . . .
SEX*LAB 1 1 0.084444310 B 0.14029241 0.60 0.5481
SEX*LAB 1 2 0.130454545 B 0.14266849 0.91 0.3619
SEX*LAB 1 3 0.146833333 B 0.15521557 0.95 0.3455
SEX*LAB 1 4 0.047818182 B 0.15975057 0.30 0.7651
SEX*LAB 1 5 0.007785714 B 0.15819961 0.05 0.9608
SEX*LAB 1 6 0.000000000 B . . .
SEX*LAB 2 1 0.000000000 B . . .
SEX*LAB 2 2 0.000000000 B . . .
SEX*LAB 2 3 0.000000000 B . . .
SEX*LAB 2 4 0.000000000 B . . .
SEX*LAB 2 5 0.000000000 B . . .
SEX*LAB 2 6 0.000000000 B . . . PubH 6002: Biostatistical Applications for Public Health
SAS Output #3 (continued)
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
CAMMOL LSMEAN
SEX LAB LSMEAN Number
1 1 2.29237288 1
1 2 2.40900000 2
1 3 2.34500000 3
1 4 2.36000000 4
1 5 2.20750000 5
1 6 2.23000000 6
2 1 2.36392857 7
2 2 2.43454545 8
2 3 2.35416667 9
2 4 2.46818182 10
2 5 2.35571429 11
2 6 2.38600000 12
Least Squares Means for effect SEX*LAB
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: CAMMOL
i/j 1 2 3 4 5 6 7 8 9 10 11 12
1 0.0211 0.9996 0.9989 0.9767 1.0000 0.3553 0.0007 0.9217 0.0019 0.9824 0.9055
2 0.0211 0.9987 1.0000 0.1386 0.9633 0.9859 1.0000 0.9885 0.9830 0.9982 1.0000
3 0.9996 0.9987 1.0000 0.9235 0.9996 1.0000 0.9762 1.0000 0.8734 1.0000 1.0000
4 0.9989 1.0000 1.0000 0.9094 0.9991 1.0000 0.9982 1.0000 0.9747 1.0000 1.0000
5 0.9767 0.1386 0.9235 0.9094 1.0000 0.4566 0.0477 0.6747 0.0236 0.7659 0.6073
6 1.0000 0.9633 0.9996 0.9991 1.0000 0.9962 0.9083 0.9984 0.8051 0.9986 0.9926
7 0.3553 0.9859 1.0000 1.0000 0.4566 0.9962 0.7079 1.0000 0.4548 1.0000 1.0000
8 0.0007 1.0000 0.9762 0.9982 0.0477 0.9083 0.7079 0.8228 0.9999 0.9516 0.9998
9 0.9217 0.9885 1.0000 1.0000 0.6747 0.9984 1.0000 0.8228 0.5671 1.0000 1.0000
10 0.0019 0.9830 0.8734 0.9747 0.0236 0.8051 0.4548 0.9999 0.5671 0.7842 0.9871
11 0.9824 0.9982 1.0000 1.0000 0.7659 0.9986 1.0000 0.9516 1.0000 0.7842 1.0000
12 0.9055 1.0000 1.0000 1.0000 0.6073 0.9926 1.0000 0.9998 1.0000 0.9871 1.0000 PubH 6002: Biostatistical Applications for Public Health
SAS Output #4
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 0.12362 0.06181 3.42 0.0349
Error 173 3.12514 0.01806
Corrected Total 175 3.24875
Root MSE 0.13440 R-Square 0.0381
Dependent Mean 2.35551 Adj R-Sq 0.0269
Coeff Var 5.70593
Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 2.34030 0.15751 14.86 <.0001
AGE 1 -0.00088138 0.00211 -0.42 0.6761
AKPHOS 1 0.00085943 0.00033677 2.55 0.0116 14
SAS Output #5
Sum of
Source DF Squares Mean Square F Value Pr > F
Model 3 0.32577591 0.10859197 6.39 0.0004
Error 172 2.92297806 0.01699406
Corrected Total 175 3.24875398
R-Square Coeff Var Root MSE CAMMOL Mean
0.100277 5.534308 0.130361 2.355511
Source DF Type III SS Mean Square F Value Pr > F
SEX 1 0.20215745 0.20215745 11.90 0.0007
AGE 1 0.00183794 0.00183794 0.11 0.7427
AKPHOS 1 0.05937126 0.05937126 3.49 0.0633
Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 2.382667955 B 0.15326557 15.55 <.0001
SEX 1 -0.069350276 B 0.02010721 -3.45 0.0007
SEX 2 0.000000000 B . . .
AGE -0.000672042 0.00204352 -0.33 0.7427
AKPHOS 0.000623752 0.00033371 1.87 0.0633
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
H0:LSMean1=
CAMMOL LSMean2
SEX LSMEAN Pr > |t|
1 2.32201833 0.0007
2 2.39136861
SAS Output #3
Source DF
Model 11 Error 164
Sum of Squares 0.68000807 2.57678284 3.25679091 Mean Square F Value 0.06181892 3.93 0.01571209
Pr>F <.0001
Pr>F
0.0097 0.0011 0.6214
|t|
Corrected Total Source
SEX LAB SEX*LAB Parameter
Intercept SEX 1 SEX 2 LAB 1 LAB 2 LAB 3 LAB 4 LAB 5 LAB 6 SEX*LAB 1 SEX*LAB 1 SEX*LAB 1 SEX*LAB 1 SEX*LAB 1 SEX*LAB 1 SEX*LAB 2 SEX*LAB 2 SEX*LAB 2 SEX*LAB 2 SEX*LAB 2 SEX*LAB 2
175
R-Square 0.208797
Coeff Var Root MSE CAMMOL Mean 5.322114 0.125348 2.355227
DF Type III SS
1 0.10766731 5 0.33628448 5 0.05528125
Estimate
Mean Square
0.10766731 0.06725690 0.01105625
F Value
6.85 4.28 0.70 Standard Error
t
Value Pr>
1 2 3 4 5 6 1 2 3 4 5 6
2.386000000 B 0.05605728 -0.156000000 B 0.13731172
0.000000000 B . -0.022071429 B 0.06085692
0.048545455 B 0.06210156 -0.031833333 B 0.06672150 0.082181818 B 0.06760762 -0.030285714 B 0.07339620
0.000000000 B . 0.084444310 B 0.14029241 0.130454545 B 0.14266849 0.146833333 B 0.15521557 0.047818182 B 0.15975057 0.007785714 B 0.15819961 0.000000000 B . 0.000000000 B . 0.000000000 B . 0.000000000 B . 0.000000000 B . 0.000000000 B . 0.000000000 B . 42.56 <.0001 -1.14 0.2576
. . -0.36 0.7173 0.78 0.4355 -0.48 0.6339 1.22 0.2259 -0.41 0.6804
. . 0.60 0.5481 0.91 0.3619 0.95 0.3455 0.30 0.7651 0.05 0.9608
. . . . . . . . . . . . . .
11
PubH 6002: Biostatistical Applications for Public Health SAS Output #3 (continued)
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
CAMMOL LSMEAN SEX LAB LSMEAN Number 1 1 1 2 1 3 1 4 1 5
- 16
- 21
2 2 2 3 2 4 2 5 2 6
2.29237288 1 2.40900000 2 2.34500000 3 2.36000000 4 2.20750000 5 2.23000000 6 2.36392857 7 2.43454545 8 2.35416667 9 2.46818182 10 2.35571429 11 2.38600000 12
i/j 1
1
- 20.0211
- 30.9996
- 40.9989
- 50.9767
- 61.0000
- 70.3553
- 80.0007
- 90.9217
- 100.0019
- 110.9824
- 120.9055
Least Squares Means for effect SEX*LAB Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: CAMMOL
2 3 4 5 6 7 8 9 10
0.0211 0.9996 0.9989 0.9767 1.0000 0.3553 0.0007 0.9217 0.0019 0.9987 1.0000 0.1386 0.9633 0.9859 1.0000 0.9885 0.9830 0.9987 1.0000 0.9235 0.9996 1.0000 0.9762 1.0000 0.8734 1.0000 1.0000 0.9094 0.9991 1.0000 0.9982 1.0000 0.9747 0.1386 0.9235 0.9094 1.0000 0.4566 0.0477 0.6747 0.0236 0.9633 0.9996 0.9991 1.0000 0.9962 0.9083 0.9984 0.8051 0.9859 1.0000 1.0000 0.4566 0.9962 0.7079 1.0000 0.4548 1.0000 0.9762 0.9982 0.0477 0.9083 0.7079 0.8228 0.9999 0.9885 1.0000 1.0000 0.6747 0.9984 1.0000 0.8228 0.5671
0.9830 0.8734 0.9747 0.0236 0.8051 0.4548 0.9999 0.5671
0.9982 1.0000 1.0000 0.7659 0.9986 1.0000 0.9516 1.0000 0.7842 1.0000 1.0000 1.0000 0.6073 0.9926 1.0000 0.9998 1.0000 0.9871
11
0.9824 0.9982 1.0000 1.0000 0.7659 0.9986 1.0000 0.9516 1.0000 0.7842
1.0000
12
0.9055 1.0000 1.0000 1.0000 0.6073 0.9926 1.0000 0.9998 1.0000 0.9871 1.0000
PubH 6002: Biostatistical Applications for Public Health SAS Output #4
Source DF
Model 2 Error 173 Corrected Total 175
Root MSE Dependent Mean Coeff Var Sum of Squares Mean Square F Value 0.06181 3.42 0.01806 R-Square 0.0381 Adj R-Sq 0.0269
Pr > F 0.0349
0.12362 3.12514 3.24875 0.13440 2.35551 5.70593
Variable
Intercept AGE AKPHOS Parameter DF Estimate 1 2.34030 1 -0.00088138 1 0.00085943 Standard Error
0.15751
0.00211 0.00033677
t Value
14.86 -0.42 2.55
Pr > |t|
<.0001 0.6761 0.0116
SAS Output #5
Source
Model Error Corrected Total Source
SEX AGE AKPHOS Sum of DF Squares 3 0.32577591 172 2.92297806 175 3.24875398 Mean Square F Value 0.10859197 6.39 0.01699406
Pr>F 0.0004
Pr>F
0.0007 0.7427 0.0633 R-Square 0.100277
Coeff Var Root MSE CAMMOL Mean 5.534308 0.130361 2.355511
DF Type III SS
Mean Square F Value 0.20215745 11.90 0.00183794 0.11 0.05937126 3.49
1 1 1
0.20215745 0.00183794 0.05937126 Parameter Estimate
Intercept 2.382667955 SEX 1 -0.069350276 SEX 2 0.000000000 AGE -0.000672042 AKPHOS 0.000623752
Standard Error B 0.15326557 B 0.02010721 B.
0.00204352 0.00033371
t Value
15.55 -3.45 . -0.33
1.87
Tukey-Kramer
Pr>|t|
<.0001 0.0007
. 0.7427 0.0633
Least Squares Means Adjustment for Multiple Comparisons:
SEX
1 2
CAMMOL LSMEAN 2.32201833 2.39136861 H0:LSMean1= LSMean2 Pr > |t| 0.0007
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
