Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Consider the following problem Given a positive constant c and function B, find u such that atu = cozu in (0, 1) for t >

image text in transcribed
image text in transcribed
Consider the following problem Given a positive constant c and function B, find u such that atu = cozu in (0, 1) for t > 0, (1) u(0, t) = u(1, t) = 0, (2) u(x,0) = B(x) for r E (0, 1). (3) Suppose the eigenfunctions are denoted by Xx. Suppose also that B is Rie- mann integrable and the Fourier coefficients ck are defined by Ck / (Xx (x)2 dx = B(x)Xx(z) dx. (4) The aim is to prove that cexp(-cAxt)Xx(x) converges uniformly on [0, 1] x [to, ti], k = 1 where to > 0. (The notation can be simplified if one uses the fact that Xk(0) = Xk(1) = 0.) Prove the following steps 1. Provide an example or examples such that 2. Prove that for any positive constant d, Ek , Ck exp(-dAk) converges

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Concepts In Set Theory

Authors: Mofidul Islam

1st Edition

9353146232, 9789353146238

More Books

Students also viewed these Mathematics questions