Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Consider the mass-on-a-spring system as shown in the figure below. The spring has a spring constant of 1.86e+3 N/m, and the block has a mass

image text in transcribed
image text in transcribed
Consider the mass-on-a-spring system as shown in the figure below. The spring has a spring constant of 1.86e+3 N/m, and the block has a mass of 1.39 kg. There is a constant force of kinetic friction between the mass and the floor of 4.71 N. Starting with the spring compressed by 0.117 m from its equilibrium position, how far will the block travel once it leaves the spring? (Assume that block leaves the spring at the spring's equilibrium position, marked x=0 in the figure. Give your answer as the distance from the equilibrium position to the final position of the block.) Hint: How much work must friction do in order to bring the mass to a stop? How much distance is required for friction to do this work? Image size: s M L Max m X = 0 Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23, -2, 1e6, 5.23e-8 Enter answer here m

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

College Physics Reasoning and Relationships

Authors: Nicholas Giordano

2nd edition

840058195, 9781285225340 , 978-0840058195

More Books

Students also viewed these Physics questions

Question

Identify five different types of control procedures.

Answered: 1 week ago