Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

first_name Lenna Roxane Erick Penney Wilda Gail Carin Mattie Arminda Herminia Christiane Helene Regenia Keneth Elke Iluminada Leota Kiley Veronika Rozella Kanisha Shenika Kallie Bobbye

first_name Lenna Roxane Erick Penney Wilda Gail Carin Mattie Arminda Herminia Christiane Helene Regenia Keneth Elke Iluminada Leota Kiley Veronika Rozella Kanisha Shenika Kallie Bobbye Micaela Dominque Stephaine Tammara Cory Elvera Carma Louisa Shawna Xuan Lindsey Devora Sheridan Chau Kerry Joesph Stephaine Marguerita Benton Merilyn Georgene Melodie Norah last_name Paprocki Campain Ferencz Weight Giguere Kitty Deleo Poquette Parvis Nicolozakes Eschberger Rodenberger Kannady Borgman Sengbusch Ohms Dilliard Caldarera Inouye Ostrosky Waycott Seewald Blackwood Rhym Rhymes Dickerson Barfield Wardrip Gibes Benimadho Vanheusen Cronauer Palaspas Rochin Dilello Perez Zane Kitzman Theodorov Degonia Vinning Hiatt Skursky Bayless Montezuma Knipp Waymire city Anchorage Fairbanks Fairbanks Anchorage Anchorage Anchorage Little Rock Phoenix Phoenix Scottsdale Phoenix Peoria Scottsdale Phoenix Phoenix Mesa San Jose Los Angeles San Jose Camarillo Los Angeles Van Nuys San Francisco San Carlos Concord Hayward Gardena Burlingame San Gabriel San Jose San Leandro San Leandro Thousand Oaks San Mateo Ontario Oakland Riverside Beverly Hills Sacramento Berkeley San Francisco Oakley Gardena Santa Clara San Ramon Thousand Oaks San Francisco county Anchorage Fairbanks North Star Fairbanks North Star Anchorage Anchorage Anchorage Pulaski Maricopa Maricopa Maricopa Maricopa Maricopa Maricopa Maricopa Maricopa Maricopa Santa Clara Los Angeles Santa Clara Ventura Los Angeles Los Angeles San Francisco San Mateo Contra Costa Alameda Los Angeles San Mateo Los Angeles Santa Clara Alameda Alameda Ventura San Mateo San Bernardino Alameda Riverside Los Angeles Sacramento Alameda San Francisco Contra Costa Los Angeles Santa Clara Contra Costa Ventura San Francisco state AK AK AK AK AK AK AR AZ AZ AZ AZ AZ AZ AZ AZ AZ CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA zip ZIP_2 99501 99 99708 99 99712 99 99515 99 99501 99 99501 99 72202 72 85013 85 85017 85 85254 85 85034 85 85381 85 85260 85 85012 85 85013 85 85204 85 95111 95 90034 90 95111 95 93012 93 90006 90 91405 91 94104 94 94070 94 94520 94 94545 94 90247 90 94010 94 91776 91 95110 95 94577 94 94577 94 91362 91 94403 94 91761 91 94606 94 92501 92 90212 90 95827 95 94710 94 94104 94 94561 94 90248 90 95054 95 94583 94 91362 91 94107 94 Aliza Mozell Viola Rima Glendora Cristy Tiera Lashon Peggie Alyce Charlene Stevie Joseph Filiberto Raul Olive Justine Tarra Louvenia Vincenza Venita Wynell Gayla Mitsue Lizbeth Brett Staci Merissa Trinidad Mari Antione Clorinda Dick Daniel Cristal Rasheeda Refugia Dorothy Gail Thaddeus Lai Carmelina Alease Howard Pamella Sherita Jaclyn Mitzie Baltimore Pelkowski Bitsuie Bevelacqua Sarbacher Lother Frankel Vizarro Sturiale Arias Hamilton Westerbeck Cryer Tawil Upthegrove Matuszak Ferrario Nachor Beech Zepp Maillard Dorshorst Schnitzler Scipione Kohl Mccullan Schmaltz Tomblin Mcrae Lueckenbach Onofrio Heimann Wenzinger Perruzza Samara Sayaphon Jacobos Chesterfield Similton Ankeny Harabedian Lindall Buemi Paulas Fortino Saras Bachman Hudnall San Jose South San Francisco Northridge Gardena Rohnert Park Escondido El Monte Roseville El Cajon Stockton Santa Rosa Costa Mesa Huntington Beach Los Angeles La Mesa Cathedral City Pomona San Francisco Beverly Hills El Cajon Anaheim Pacifica Hayward Oroville Gardena La Mesa Pasadena Bellflower San Francisco San Diego San Bernardino Escondido Gardena Santa Ana Los Angeles Saratoga Hayward San Diego Thousand Palms Roseville Novato Littleton Boulder Denver Denver Colorado Springs Colorado Springs Englewood Santa Clara San Mateo Los Angeles Los Angeles Sonoma San Diego Los Angeles Placer San Diego San Joaquin Sonoma Orange Orange Los Angeles San Diego Riverside Los Angeles San Francisco Los Angeles San Diego Orange San Mateo Alameda Butte Los Angeles San Diego Los Angeles Los Angeles San Francisco San Diego San Bernardino San Diego Los Angeles Orange Los Angeles Santa Clara Alameda San Diego Riverside Placer Marin Douglas Boulder Denver Denver El Paso El Paso Arapahoe CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CO CO CO CO CO CO CO 95132 94080 91325 90248 94928 92025 91731 95661 92020 95207 95407 92626 92647 90016 91942 92234 91768 94104 90210 92020 92801 94044 94545 95965 90248 91942 91106 90706 94105 92110 92410 92025 90248 92705 90021 95070 94545 92126 92276 95678 94945 80126 80303 80231 80212 80937 80919 80110 95 94 91 90 94 92 91 95 92 95 95 92 92 90 91 92 91 94 90 92 92 94 94 95 90 91 91 90 94 92 92 92 90 92 90 95 94 92 92 95 94 80 80 80 80 80 80 80 Virgie Yoko Harrison Ma Zona Teddy Alesia Lavera Arlette Tiffiny Pamella Lucina Hillary Gracia Ashlyn Marge Avery Ressie Lorrine Martina Jerry Theodora Jenelle Roosevelt Denise Audry Rikki Hoa Joanna Jeanice Sharika Nickolas Shawnda Jovita Chauncey Scarlet Belen Sarah Renea Leota Paris Izetta Angella Brandon Rolande Novella Glenn Vallie Kiel Fishburne Haufler Layous Colla Pedrozo Hixenbaugh Perin Honeywell Steffensmeier Schmierer Lary Skulski Melnyk Pinilla Limmel Steier Auffrey Worlds Staback Zurcher Restrepo Regusters Hoffis Patak Yaw Nayar Sarao Leinenbach Claucherty Eanes Juvera Yori Oles Motley Cartan Strassner Candlish Monterrubio Ragel Wide Funnell Cetta Callaro Spickerman Degroot Berray Mondella Denver New Haven New Haven North Haven Norwalk Bridgeport Washington Miami Jacksonville Miami Homestead Cocoa Homosassa Jacksonville Opa Locka Crestview Orlando Miami Tampa Orlando Satellite Beach Miami Tampa Hialeah Orlando Brandon Miami Oak Hill Lake Worth Miami Orlando Crystal River Longwood Daytona Beach Orlando Albany Douglasville Atlanta Atlanta Trion Atlanta Atlanta Honolulu Honolulu Pearl City Hilo Des Moines Boise Denver New Haven New Haven New Haven Fairfield Fairfield District of Columbia Miami-Dade Duval Miami-Dade Miami-Dade Brevard Citrus Duval Miami-Dade Okaloosa Orange Miami-Dade Hillsborough Orange Brevard Miami-Dade Hillsborough Miami-Dade Orange Hillsborough Miami-Dade Volusia Palm Beach Miami-Dade Orange Citrus Seminole Volusia Orange Dougherty Douglas Fulton Fulton Chattooga Fulton Dekalb Honolulu Honolulu Honolulu Hawaii Polk Ada CO CT CT CT CT CT DC FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL GA GA GA GA GA GA GA HI HI HI HI IA ID 80216 6511 6515 6473 6854 6610 20001 33196 32254 33133 33030 32922 34448 32216 33054 32536 32803 33134 33614 32822 32937 33136 33619 33014 32801 33511 33155 32759 33461 33142 32806 34429 32750 32114 32804 31701 30135 30328 30328 30753 30342 30340 96817 96819 96782 96720 50315 83707 80 65 65 64 68 66 20 33 32 33 33 32 34 32 33 32 32 33 33 32 32 33 33 33 32 33 33 32 33 33 32 34 32 32 32 31 30 30 30 30 30 30 96 96 96 96 50 83 Dorthy Winfred Brittni Mitsue Fletcher Viva Lai Marti Valentin Jennifer Carmela Daron Geoffrey Weldon Erick Nichelle Cassi Joni Malinda Reita Carey Raymon Kristofer Serina Alline Gary Raylene Chanel Kati Dyan Kimberlie Carlee Stephane James Solange Arlene Larae Willodean Terrilyn Kayleigh Jutta Cordelia Jina Donte Oretha Beatriz Annabelle Nicolette Hidvegi Brucato Gillaspie Tollner Flosi Toelkes Gato Maybury Klimek Fallick Cookey Dinos Acey Acuff Nievas Meteer Wildfong Breland Hochard Leto Dopico Calvaresi Bennick Zagen Jeanty Nunlee Kampa Caudy Rulapaugh Oldroyd Duenas Boulter Myricks Butt Shinko Klusman Gudroe Konopacki Rodeigues Lace Amyot Storment Briddick Kines Menter Corrington Boord Brossart Boise Moscow Boise Chicago Rockford Chicago Evanston Chicago Chicago Wheeling Chicago Highland Park Palatine Arlington Heights Chicago Chicago Rolling Meadows Elk Grove Village Indianapolis Indianapolis Indianapolis Indianapolis Bloomington Fort Wayne South Bend Fortville Elkhart Shawnee Abilene Overland Park Hays Abilene Burlington New Orleans Metairie New Orleans Houma Lafayette New Orleans Lafayette Broussard Lafayette Boston Worcester Boston Middleboro Concord Westborough Ada Latah Ada Cook Winnebago Cook Cook Cook Cook Cook Cook Lake Cook Cook Cook Cook Cook Cook Marion Marion Marion Marion Monroe Allen St Joseph Hancock Elkhart Johnson Dickinson Johnson Ellis Dickinson Boone Orleans Jefferson Orleans Terrebonne Lafayette Orleans Lafayette Lafayette Lafayette Suffolk Worcester Suffolk Plymouth Middlesex Worcester ID ID ID IL IL IL IL IL IL IL IL IL IL IL IL IL IL IL IN IN IN IN IN IN IN IN IN KS KS KS KS KS KY LA LA LA LA LA LA LA LA LA MA MA MA MA MA MA 83704 83843 83709 60632 61109 60647 60201 60638 60604 60090 60623 60035 60067 60004 60624 60657 60008 60007 46202 46240 46220 46222 47404 46802 46601 46040 46514 66218 67410 66204 67601 67410 41005 70116 70002 70112 70360 70506 70130 70508 70518 70506 2128 1602 2210 2346 1742 1581 83 83 83 60 61 60 60 60 60 60 60 60 60 60 60 60 60 60 46 46 46 46 47 46 46 46 46 66 67 66 67 67 41 70 70 70 70 70 70 70 70 70 21 16 22 23 17 15 Katina Lucy Corinne Nobuko Levi Luisa Kris Ezekiel Ilene Laurel Glory Fernanda Sylvia Detra Reena Loreta Kaitlyn Ernest Lashaunda Elouise Annelle Eden Izetta Jolanda Ceola Goldie Josephine Yuki Beckie Chaya Deonna Judy Ligia Cherry Dulce Markus Sharee Vilma Quentin Kenneth Fatima Polidori Treston Loder Halsey Munis Jurney Marrier Chui Eroman Reitler Kulzer Jillson Cousey Coyier Maisto Timenez Ogg Syrop Lizama Gwalthney Tagala Jayson Dewar Hanafan Setter Schirpke Darakjy Whobrey Silvestrini Malvin Kippley Aquas Reiber Lietz Labreche Lukasik Maile Berlanga Swayze Grenet Saylors Wilmington Worcester North Attleboro New Bedford Worcester Cambridge Baltimore Easton Glen Burnie Baltimore Owings Mills Preston Hampstead Aberdeen Salisbury Clinton Baltimore Hyattsville Hanover Bladensburg Parkville Baltimore Baltimore Bangor Warren Bangor Brighton Taylor Dearborn Ann Arbor Southfield Niles Lansing Waterford Rochester Sterling Heights Muskegon Grand Rapids Milan East Lansing Middlesex Worcester Bristol Bristol Worcester Middlesex Baltimore City Talbot Anne Arundel Baltimore City Baltimore Caroline Carroll Harford Wicomico Prince Georges Baltimore City Prince Georges Anne Arundel Prince Georges Baltimore Baltimore City Baltimore City Penobscot Knox Penobscot Livingston Wayne Wayne Washtenaw Oakland Berrien Ingham Oakland Oakland Macomb Muskegon Kent Monroe Ingham MA MA MA MA MA MA MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD MD ME ME ME MI MI MI MI MI MI MI MI MI MI MI MI MI MI 1887 1602 2760 2745 1603 2138 21224 21601 21061 21215 21117 21655 21074 21001 21801 20735 21230 20785 21076 20710 21234 21202 21217 4401 4864 4401 48116 48180 48126 48103 48075 49120 48933 48329 48307 48310 49442 49546 48160 48823 18 16 27 27 16 21 21 21 21 21 21 21 21 21 21 20 21 20 21 20 21 21 21 44 48 44 48 48 48 48 48 49 48 48 48 48 49 49 48 48 Final Project Milestone Two Data mining is the process of studying and analyzing great volumes of data with the objective of establishing patterns or discovering clusters that are useful in a company's decision making process. In analyzing Bubba Gump's data, there are two techniques that will provide useful information in regard to our discovery process. These are use of decision trees and an artificial neural network. A decision tree is a form of map or graph that outlines the various alternatives available to a company and how they affect critical metrics such as sales and profitability. This technique is appropriate for the company's analysis because it accommodates multiple variables and it is possible to carry out a sensitivity analysis of the results. [Tam15] Customer satisfaction depends on several factors such as environmental sanitation, service provided, or quality of food hence the need for a multivariable factor tool. An artificial neural network is also appropriate as it can identify patterns by using nonstatistical information. [Ari15] One of the data components in Bubba's data warehouse is customer information that includes their product preference and their impression of the company's products. The ANN will be useful in evaluating the qualitative data aspects that will complement the quantitative analysis conducted by the decision tree. The report will employ data visualization tools to present the results of the analysis to the management. The tools will include software such as Microsoft Power BI, graphs, and the decision tree. Microsoft Power BI is a web-based platform to be used perform analysis and visualize the data. The software allows the display of trends and data patterns with ease. Graphs, on the other hand, summarize the information while the decision tree outlines in an elaborate manner the various decision options available to the company. [Hwa10] By using the decision tree, it is easy for the company to trace the actions affecting its sales level from the first transaction to the last. This will build a more complete \"picture\" to establish a foundation for our analysis to influence future impacting business decisions. The specific research question for the study is: What factors affect customer satisfaction at Bubba Gump Shrimp Company? To address the above question, the following research question will be used to determine the patterns in the data. What is the similarity in the data provided by the survey correspondents? Throughout the data mining task, we will evaluate whether the research question is adequately answered by determining whether or not the answers are straightforward in nature. If the answers are clear, it will be easy to create the decision tree using the statistical data. There will also be enough qualitative information for an ANN. The time taken to analyze the information will be a good measure of the project's progress. Note that the mining and analysis does not end after the presentation, and several follow-up explorations need to be accomplished. [Hwa10] This includes evaluating whether the results are consistent with the situation on the ground. Conducting the follow-up will help the management identify any inconsistencies with the information in the data houses and give them an opportunity to adjust the situation. There is secondary information that provides useful information for the study. However, they possess several weaknesses including being outdated while some contain information marred with errors. Regardless of these shortcomings, they are useful as they represent a portion of the historical data and the framework to follow for effective results. References Arif, M., Alam, K. A., & Hussain, M. (2015). Application of Data Mining Using Artificial Neural Network: Survey. International Journal of Database Theory and Application, 245-270. Hwang, J., & Zhao, J. P. (2010). Factors Influencing Customer Satisfaction or Dissatisfaction in the Restaurant Business Using AnswerTree Methodology. Journal of Quality Assurance in Hospitality & Tourism, 93-110. Tama, B. A. (2015). DATA MINING FOR PREDICTING CUSTOMER SATISFACTION IN FAST-FOOD RESTAURANT. Journal of Theoretical and Applied Information Technology, 18-24. \f

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Advanced Engineering Mathematics

Authors: ERWIN KREYSZIG

9th Edition

0471488852, 978-0471488859

More Books

Students also viewed these Mathematics questions