Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Frequency: Monthly observation_date S4248SM144NCEN 1992-01-01 3459 1992-02-01 3458 1992-03-01 4002 1992-04-01 4564 1992-05-01 4221 1992-06-01 4529 1992-07-01 4466 1992-08-01 4137 1992-09-01 4126 1992-10-01 4259 1992-11-01
Frequency: Monthly | |
observation_date | S4248SM144NCEN |
1992-01-01 | 3459 |
1992-02-01 | 3458 |
1992-03-01 | 4002 |
1992-04-01 | 4564 |
1992-05-01 | 4221 |
1992-06-01 | 4529 |
1992-07-01 | 4466 |
1992-08-01 | 4137 |
1992-09-01 | 4126 |
1992-10-01 | 4259 |
1992-11-01 | 4240 |
1992-12-01 | 4936 |
1993-01-01 | 3031 |
1993-02-01 | 3261 |
1993-03-01 | 4160 |
1993-04-01 | 4377 |
1993-05-01 | 4307 |
1993-06-01 | 4696 |
1993-07-01 | 4458 |
1993-08-01 | 4457 |
1993-09-01 | 4364 |
1993-10-01 | 4236 |
1993-11-01 | 4500 |
1993-12-01 | 4974 |
1994-01-01 | 3075 |
1994-02-01 | 3377 |
1994-03-01 | 4443 |
1994-04-01 | 4261 |
1994-05-01 | 4460 |
1994-06-01 | 4985 |
1994-07-01 | 4324 |
1994-08-01 | 4719 |
1994-09-01 | 4374 |
1994-10-01 | 4248 |
1994-11-01 | 4784 |
1994-12-01 | 4971 |
1995-01-01 | 3370 |
1995-02-01 | 3484 |
1995-03-01 | 4269 |
1995-04-01 | 3994 |
1995-05-01 | 4715 |
1995-06-01 | 4974 |
1995-07-01 | 4223 |
1995-08-01 | 5000 |
1995-09-01 | 4235 |
1995-10-01 | 4554 |
1995-11-01 | 4851 |
1995-12-01 | 4826 |
1996-01-01 | 3699 |
1996-02-01 | 3983 |
1996-03-01 | 4262 |
1996-04-01 | 4619 |
1996-05-01 | 5219 |
1996-06-01 | 4836 |
1996-07-01 | 4941 |
1996-08-01 | 5062 |
1996-09-01 | 4365 |
1996-10-01 | 5012 |
1996-11-01 | 4850 |
1996-12-01 | 5097 |
1997-01-01 | 3758 |
1997-02-01 | 3825 |
1997-03-01 | 4454 |
1997-04-01 | 4635 |
1997-05-01 | 5210 |
1997-06-01 | 5057 |
1997-07-01 | 5231 |
1997-08-01 | 5034 |
1997-09-01 | 4970 |
1997-10-01 | 5342 |
1997-11-01 | 4831 |
1997-12-01 | 5965 |
1998-01-01 | 3796 |
1998-02-01 | 4019 |
1998-03-01 | 4898 |
1998-04-01 | 5090 |
1998-05-01 | 5237 |
1998-06-01 | 5447 |
1998-07-01 | 5435 |
1998-08-01 | 5107 |
1998-09-01 | 5515 |
1998-10-01 | 5583 |
1998-11-01 | 5346 |
1998-12-01 | 6286 |
1999-01-01 | 4032 |
1999-02-01 | 4435 |
1999-03-01 | 5479 |
1999-04-01 | 5483 |
1999-05-01 | 5587 |
1999-06-01 | 6176 |
1999-07-01 | 5621 |
1999-08-01 | 5889 |
1999-09-01 | 5828 |
1999-10-01 | 5849 |
1999-11-01 | 6180 |
1999-12-01 | 6771 |
2000-01-01 | 4243 |
2000-02-01 | 4952 |
2000-03-01 | 6008 |
2000-04-01 | 5353 |
2000-05-01 | 6435 |
2000-06-01 | 6673 |
2000-07-01 | 5636 |
2000-08-01 | 6630 |
2000-09-01 | 5887 |
2000-10-01 | 6322 |
2000-11-01 | 6520 |
2000-12-01 | 6678 |
2001-01-01 | 5082 |
2001-02-01 | 5216 |
2001-03-01 | 5893 |
2001-04-01 | 5894 |
2001-05-01 | 6799 |
2001-06-01 | 6667 |
2001-07-01 | 6374 |
2001-08-01 | 6840 |
2001-09-01 | 5575 |
2001-10-01 | 6545 |
2001-11-01 | 6789 |
2001-12-01 | 7180 |
2002-01-01 | 5117 |
2002-02-01 | 5442 |
2002-03-01 | 6337 |
2002-04-01 | 6525 |
2002-05-01 | 7216 |
2002-06-01 | 6761 |
2002-07-01 | 6958 |
2002-08-01 | 7070 |
2002-09-01 | 6148 |
2002-10-01 | 6924 |
2002-11-01 | 6716 |
2002-12-01 | 7975 |
2003-01-01 | 5326 |
2003-02-01 | 5609 |
2003-03-01 | 6414 |
2003-04-01 | 6741 |
2003-05-01 | 7144 |
2003-06-01 | 7133 |
2003-07-01 | 7568 |
2003-08-01 | 7266 |
2003-09-01 | 6634 |
2003-10-01 | 7626 |
2003-11-01 | 6843 |
2003-12-01 | 8540 |
2004-01-01 | 5629 |
2004-02-01 | 5898 |
2004-03-01 | 7045 |
2004-04-01 | 7094 |
2004-05-01 | 7333 |
2004-06-01 | 7918 |
2004-07-01 | 7289 |
2004-08-01 | 7396 |
2004-09-01 | 7259 |
2004-10-01 | 7268 |
2004-11-01 | 7731 |
2004-12-01 | 9058 |
2005-01-01 | 5557 |
2005-02-01 | 6237 |
2005-03-01 | 7723 |
2005-04-01 | 7262 |
2005-05-01 | 8241 |
2005-06-01 | 8757 |
2005-07-01 | 7352 |
2005-08-01 | 8496 |
2005-09-01 | 7741 |
2005-10-01 | 7710 |
2005-11-01 | 8247 |
2005-12-01 | 8902 |
2006-01-01 | 6066 |
2006-02-01 | 6590 |
2006-03-01 | 7923 |
2006-04-01 | 7335 |
2006-05-01 | 8843 |
2006-06-01 | 9327 |
2006-07-01 | 7792 |
2006-08-01 | 9156 |
2006-09-01 | 8037 |
2006-10-01 | 8640 |
2006-11-01 | 9128 |
2006-12-01 | 9545 |
2007-01-01 | 6627 |
2007-02-01 | 6743 |
2007-03-01 | 8195 |
2007-04-01 | 7828 |
2007-05-01 | 9570 |
2007-06-01 | 9484 |
2007-07-01 | 8608 |
2007-08-01 | 9543 |
2007-09-01 | 8123 |
2007-10-01 | 9649 |
2007-11-01 | 9390 |
2007-12-01 | 10065 |
2008-01-01 | 7093 |
2008-02-01 | 7483 |
2008-03-01 | 8365 |
2008-04-01 | 8895 |
2008-05-01 | 9794 |
2008-06-01 | 9977 |
2008-07-01 | 9553 |
2008-08-01 | 9375 |
2008-09-01 | 9225 |
2008-10-01 | 9948 |
2008-11-01 | 8758 |
2008-12-01 | 10839 |
2009-01-01 | 7266 |
2009-02-01 | 7578 |
2009-03-01 | 8688 |
2009-04-01 | 9162 |
2009-05-01 | 9369 |
2009-06-01 | 10167 |
2009-07-01 | 9507 |
2009-08-01 | 8923 |
2009-09-01 | 9272 |
2009-10-01 | 9075 |
2009-11-01 | 8949 |
2009-12-01 | 10843 |
2010-01-01 | 6558 |
2010-02-01 | 7481 |
2010-03-01 | 9475 |
2010-04-01 | 9424 |
2010-05-01 | 9351 |
2010-06-01 | 10552 |
2010-07-01 | 9077 |
2010-08-01 | 9273 |
2010-09-01 | 9420 |
2010-10-01 | 9413 |
2010-11-01 | 9866 |
2010-12-01 | 11455 |
2011-01-01 | 6901 |
2011-02-01 | 8014 |
2011-03-01 | 9832 |
2011-04-01 | 9281 |
2011-05-01 | 9967 |
2011-06-01 | 11344 |
2011-07-01 | 9106 |
2011-08-01 | 10469 |
2011-09-01 | 10085 |
2011-10-01 | 9612 |
2011-11-01 | 10328 |
2011-12-01 | 11483 |
2012-01-01 | 7486 |
2012-02-01 | 8641 |
2012-03-01 | 9709 |
2012-04-01 | 9423 |
2012-05-01 | 11342 |
2012-06-01 | 11274 |
2012-07-01 | 9845 |
2012-08-01 | 11163 |
2012-09-01 | 9532 |
2012-10-01 | 10754 |
2012-11-01 | 10953 |
2012-12-01 | 11922 |
2013-01-01 | 8395 |
2013-02-01 | 8888 |
2013-03-01 | 10110 |
2013-04-01 | 10493 |
2013-05-01 | 12218 |
2013-06-01 | 11385 |
2013-07-01 | 11186 |
2013-08-01 | 11462 |
2013-09-01 | 10494 |
2013-10-01 | 11540 |
2013-11-01 | 11138 |
2013-12-01 | 12709 |
2014-01-01 | 8557 |
2014-02-01 | 9059 |
2014-03-01 | 10055 |
2014-04-01 | 10977 |
2014-05-01 | 11792 |
2014-06-01 | 11904 |
2014-07-01 | 10965 |
2014-08-01 | 10981 |
2014-09-01 | 10828 |
2014-10-01 | 11817 |
2014-11-01 | 10470 |
2014-12-01 | 13310 |
2015-01-01 | 8400 |
2015-02-01 | 9062 |
2015-03-01 | 10722 |
2015-04-01 | 11107 |
2015-05-01 | 11508 |
2015-06-01 | 12904 |
2015-07-01 | 11869 |
2015-08-01 | 11224 |
2015-09-01 | 12022 |
2015-10-01 | 11983 |
2015-11-01 | 11506 |
2015-12-01 | 14183 |
2016-01-01 | 8650 |
2016-02-01 | 10324 |
2016-03-01 | 12109 |
2016-04-01 | 11423 |
2016-05-01 | 12242 |
2016-06-01 | 13685 |
2016-07-01 | 10955 |
2016-08-01 | 12705 |
2016-09-01 | 12276 |
2016-10-01 | 11910 |
2016-11-01 | 13021 |
2016-12-01 | 14425 |
2017-01-01 | 9045 |
2017-02-01 | 10453 |
2017-03-01 | 12481 |
2017-04-01 | 11489 |
2017-05-01 | 13537 |
2017-06-01 | 14717 |
2017-07-01 | 11395 |
2017-08-01 | 13373 |
2017-09-01 | 11871 |
2017-10-01 | 12663 |
2017-11-01 | 13202 |
2017-12-01 | 14191 |
2018-01-01 | 9493 |
2018-02-01 | 10329 |
2018-03-01 | 12569 |
2018-04-01 | 11805 |
2018-05-01 | 14012 |
2018-06-01 | 14420 |
2018-07-01 | 12518 |
2018-08-01 | 14073 |
2018-09-01 | 12231 |
2018-10-01 | 13727 |
2018-11-01 | 13949 |
2018-12-01 | 15308 |
2019-01-01 | 10616 |
2019-02-01 | 10976 |
2019-03-01 | 12472 |
2019-04-01 | 13098 |
2019-05-01 | 14573 |
2019-06-01 | 14277 |
2019-07-01 | 13484 |
2019-08-01 | 14205 |
2019-09-01 | 12992 |
2019-10-01 | 14427 |
2019-11-01 | 13773 |
2019-12-01 | 16197 |
2020-01-01 | 10659 |
2020-02-01 | 11350 |
2020-03-01 | 13410 |
2020-04-01 | 12334 |
2020-05-01 | 14111 |
2020-06-01 | 16215 |
2020-07-01 | 15757 |
2020-08-01 | 15400 |
2020-09-01 | 15644 |
Question 1 Perform a descriptive statistical analysis of monthly sales over the period Jan2018 to Dec2019. Question 2 Generate 1-step-ahead forecasts for the last two years of your sample (2018 \& 2019) using a SMA(q) model with window lengths q=3 and q=12. Make a plot of actual against forecasted sales. Tip: Make sure to generate exactly 24 forecasts covering the period 201819, by using observations from earlier periods. Question 3 Repeat question 2 for an EWMA() model with two values for the smoothing parameter, =0.2&=0.9. Update the plot using the EWMA forecasts. Tip: To remove the initial value effect, start EWMA iterations three years earlier in the sampling period and keep the last 24 model outputs for forecasting comparison. Question 4 Make a qualitative assessment of the forecasting error for the two parametrizations of the SMA and EWMA devices: designate the periods in which models overestimate/underestimate actual sales. Do you see any systematic pattern in the alteration of the error sign across observations and predictive devices? Question 5 Make a comparson of the forecasting performance of SMA and EWMA models using the mean absolute percentage error (MAPE) criterion, where MAPE=(1/T)t=1Te^t/Yt,e^t is the forecasting error, Yt is the actual observation and T is the size of the prediction sample. Question 6 For an EWMA type of a model, make a graph of the MAPE score as a function of the parameter. Pick the value that optimizes model's performance. Question 1 Perform a descriptive statistical analysis of monthly sales over the period Jan2018 to Dec2019. Question 2 Generate 1-step-ahead forecasts for the last two years of your sample (2018 \& 2019) using a SMA(q) model with window lengths q=3 and q=12. Make a plot of actual against forecasted sales. Tip: Make sure to generate exactly 24 forecasts covering the period 201819, by using observations from earlier periods. Question 3 Repeat question 2 for an EWMA() model with two values for the smoothing parameter, =0.2&=0.9. Update the plot using the EWMA forecasts. Tip: To remove the initial value effect, start EWMA iterations three years earlier in the sampling period and keep the last 24 model outputs for forecasting comparison. Question 4 Make a qualitative assessment of the forecasting error for the two parametrizations of the SMA and EWMA devices: designate the periods in which models overestimate/underestimate actual sales. Do you see any systematic pattern in the alteration of the error sign across observations and predictive devices? Question 5 Make a comparson of the forecasting performance of SMA and EWMA models using the mean absolute percentage error (MAPE) criterion, where MAPE=(1/T)t=1Te^t/Yt,e^t is the forecasting error, Yt is the actual observation and T is the size of the prediction sample. Question 6 For an EWMA type of a model, make a graph of the MAPE score as a function of the parameter. Pick the value that optimizes model's performance
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started