Question
I need to know what formula to use. On average, 4 customers per hour use the public telephone in the sheriff's detention area, and this
I need to know what formula to use.
On average, 4 customers per hour use the public telephone in the sheriff's detention area, and this use has a Poisson distribution. The length of a phone call varies according to a negative exponential distribution, with a mean of 5 minutes. The sheriff will install a second telephone booth when an arrival can expect to wait 3 minutes or longer for the phone.
By how much must the arrival rate per hour increase to justify a second s telephone booth?
Suppose the criterion for justifying a second booth is changed to the following: Install a second booth when the probability of having to wait at all exceeds 0.6. Under this criterion, by how much must the arrival rate per hour increase to justify a second booth?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started