Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Im stuck ! Thank you Code Ive done is underneath it will complete A-E. I need F,G , 2 and 3 --------------------------------------------------Trap.m-------------------------------------------- %Define a symbolic

image text in transcribed

Im stuck ! Thank you

Code Ive done is underneath it will complete A-E. I need F,G , 2 and 3

--------------------------------------------------Trap.m--------------------------------------------

%Define a symbolic variable %Define a symbolic Function %call trap function program

function I = trap(func, a, b, n, varargin) % program is trap setting the function a = Upper bound, b = lower bound, n = amount of trapezoids % inputs: % func = name of function to be integrated % a, b = integration limits % n = number of segments (default = 100) % outputs: % I = integral estimate if nargina) % states that the upper cant be greater then the lower bound and prints error error ('upper bound must be greater than lower') % prints upper bound must be greater than lower once error is found end if nargin

True_value=double(-1*(int(func,-108,80)));% takes the intragral and finds the real value

for k=1:n True_Error(k,1)=True_value-Estimate(k,1) AbsRelTruePercentError(k,1)=(abs(True_value-Estimate(k,1))/True_value)*100 end

for c=2:n AbsApproxRelPrecentError(c,1)=(abs(Estimate(c,1)-Estimate(c-1,1))/Estimate(c,1))*100 end

table(index,Estimate, True_Error,AbsRelTruePercentError,AbsApproxRelPrecentError)

--------------------------------------------------------------Labtrap.m------------------------------------

syms T f = symfun(((-1.2278*10.^-11).*(T.^2)+6.1946*10.^-6).*T + 6.015*10.^6,T); trap(f,-180,80,8)

Use the provided MATLAB code for the n segment Trapezoidal Rule for Numerical Integration to solve Example Problem 2 Submit the following 1) Modified code (highlight the modifications) that accomplishes the following tasks: a. b. c. d. e. f. Calculates the true value Calculates the true error Calculates the absolute relative true percent error Calculates the absolute relative approximate percent error Generates Table 1 Generates a subplot which consists of a plot of the approximations vs the iterations, a plot of the absolute relative true percent error vs the iterations, and a plot of the absolute relative approximate percent error vs the iteration:s Comments for each line of code g. 2) Table 1 3) The subplot with the required plots Use the provided MATLAB code for the n segment Trapezoidal Rule for Numerical Integration to solve Example Problem 2 Submit the following 1) Modified code (highlight the modifications) that accomplishes the following tasks: a. b. c. d. e. f. Calculates the true value Calculates the true error Calculates the absolute relative true percent error Calculates the absolute relative approximate percent error Generates Table 1 Generates a subplot which consists of a plot of the approximations vs the iterations, a plot of the absolute relative true percent error vs the iterations, and a plot of the absolute relative approximate percent error vs the iteration:s Comments for each line of code g. 2) Table 1 3) The subplot with the required plots

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Advances In Databases And Information Systems Uropean Conference Adbis 2020 Lyon France August 25 27 2020 Proceedings Lncs 12245

Authors: Jerome Darmont ,Boris Novikov ,Robert Wrembel

1st Edition

3030548317, 978-3030548315

More Books

Students also viewed these Databases questions

Question

LO1 Summarize the organizations strategic planning process.

Answered: 1 week ago