Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Implementation of linked lists in C++. Implement the following set operations union intersection relative complement insertion - if the element is already in the set,

Implementation of linked lists in C++. Implement the following set operations

union

intersection

relative complement

insertion - if the element is already in the set, then nothing happens

deletion - if the element is not in the set, then nothing happens

query to check whether an element is in a set

query to find the number of number of elements in a set

display the set

destructor

copy constructor

overloading assignment operator

==================================================================

PROGRAMS:

***** node.cpp*****

// FILE: node1.cxx // IMPLEMENTS: The functions of the node class and the // linked list toolkit (see node1.h for documentation). // INVARIANT for the node class: // The data of a node is stored in data_field, and the link in link_field.

#include "node1.h" #include // Provides assert #include // Provides NULL and size_t using namespace std;

namespace main_savitch_5 { size_t list_length(const node* head_ptr) // Library facilities used: cstdlib { const node *cursor; size_t answer;

answer = 0; for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( )) ++answer; return answer; } void list_head_insert(node*& head_ptr, const node::value_type& entry) { head_ptr = new node(entry, head_ptr); }

void list_insert(node* previous_ptr, const node::value_type& entry) { node *insert_ptr; insert_ptr = new node(entry, previous_ptr->link( )); previous_ptr->set_link(insert_ptr); }

node* list_search(node* head_ptr, const node::value_type& target) // Library facilities used: cstdlib { node *cursor; for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( )) if (target == cursor->data( )) return cursor; return NULL; }

const node* list_search(const node* head_ptr, const node::value_type& target) // Library facilities used: cstdlib { const node *cursor; for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( )) if (target == cursor->data( )) return cursor; return NULL; }

node* list_locate(node* head_ptr, size_t position) // Library facilities used: cassert, cstdlib { node *cursor; size_t i; assert (0 < position); cursor = head_ptr; for (i = 1; (i < position) && (cursor != NULL); i++) cursor = cursor->link( ); return cursor; }

const node* list_locate(const node* head_ptr, size_t position) // Library facilities used: cassert, cstdlib { const node *cursor; size_t i; assert (0 < position); cursor = head_ptr; for (i = 1; (i < position) && (cursor != NULL); i++) cursor = cursor->link( ); return cursor; }

void list_head_remove(node*& head_ptr) { node *remove_ptr;

remove_ptr = head_ptr; head_ptr = head_ptr->link( ); delete remove_ptr; }

void list_remove(node* previous_ptr) { node *remove_ptr;

remove_ptr = previous_ptr->link( ); previous_ptr->set_link( remove_ptr->link( ) ); delete remove_ptr; }

void list_clear(node*& head_ptr) // Library facilities used: cstdlib { while (head_ptr != NULL) list_head_remove(head_ptr); }

void list_copy(const node* source_ptr, node*& head_ptr, node*& tail_ptr) // Library facilities used: cstdlib { head_ptr = NULL; tail_ptr = NULL;

// Handle the case of the empty list. if (source_ptr == NULL) return; // Make the head node for the newly created list, and put data in it. list_head_insert(head_ptr, source_ptr->data( )); tail_ptr = head_ptr; // Copy the rest of the nodes one at a time, adding at the tail of new list. source_ptr = source_ptr->link( ); while (source_ptr != NULL) { list_insert(tail_ptr, source_ptr->data( )); tail_ptr = tail_ptr->link( ); source_ptr = source_ptr->link( ); } }

}

===============================================================

***** node.h ******

// FILE: node1.h // PROVIDES: A class for a node in a linked list, and list manipulation // functions, all within the namespace main_savitch_5 // // TYPEDEF for the node class: // Each node of the list contains a piece of data and a pointer to the // next node. The type of the data is defined as node::value_type in a // typedef statement. The value_type may be any // of the built-in C++ classes (int, char, ...) or a class with a copy // constructor, an assignment operator, and a test for equality (x == y). // // CONSTRUCTOR for the node class: // node( // const value_type& init_data = value_type(), // node* init_link = NULL // ) // Postcondition: The node contains the specified data and link. // NOTE: The default value for the init_data is obtained from the default // constructor of the value_type. In the ANSI/ISO standard, this notation // is also allowed for the built-in types, providing a default value of // zero. The init_link has a default value of NULL. // // NOTE: // Some of the functions have a return value which is a pointer to a node. // Each of these functions comes in two versions: a non-const version (where // the return value is node*) and a const version (where the return value // is const node*). // EXAMPLES: // const node *c; // c->link( ) activates the const version of link // list_search(c,... calls the const version of list_search // node *p; // p->link( ) activates the non-const version of link // list_search(p,... calls the non-const version of list_search // // MEMBER FUNCTIONS for the node class: // void set_data(const value_type& new_data) // Postcondition: The node now contains the specified new data. // // void set_link(node* new_link) // Postcondition: The node now contains the specified new link. // // value_type data( ) const // Postcondition: The return value is the data from this node. // // const node* link( ) const <----- const version // node* link( ) <----------------- non-const version // See the note (above) about the const version and non-const versions: // Postcondition: The return value is the link from this node. // // FUNCTIONS in the linked list toolkit: // size_t list_length(const node* head_ptr) // Precondition: head_ptr is the head pointer of a linked list. // Postcondition: The value returned is the number of nodes in the linked // list. // // void list_head_insert(node*& head_ptr, const node::value_type& entry) // Precondition: head_ptr is the head pointer of a linked list. // Postcondition: A new node containing the given entry has been added at // the head of the linked list; head_ptr now points to the head of the new, // longer linked list. // // void list_insert(node* previous_ptr, const node::value_type& entry) // Precondition: previous_ptr points to a node in a linked list. // Postcondition: A new node containing the given entry has been added // after the node that previous_ptr points to. // // const node* list_search(const node* head_ptr, const node::value_type& target) // node* list_search(node* head_ptr, const node::value_type& target) // See the note (above) about the const version and non-const versions: // Precondition: head_ptr is the head pointer of a linked list. // Postcondition: The pointer returned points to the first node containing // the specified target in its data member. If there is no such node, the // null pointer is returned. // // const node* list_locate(const node* head_ptr, size_t position) // node* list_locate(node* head_ptr, size_t position) // See the note (above) about the const version and non-const versions: // Precondition: head_ptr is the head pointer of a linked list, and // position > 0. // Postcondition: The pointer returned points to the node at the specified // position in the list. (The head node is position 1, the next node is // position 2, and so on). If there is no such position, then the null // pointer is returned. // // void list_head_remove(node*& head_ptr) // Precondition: head_ptr is the head pointer of a linked list, with at // least one node. // Postcondition: The head node has been removed and returned to the heap; // head_ptr is now the head pointer of the new, shorter linked list. // // void list_remove(node* previous_ptr) // Precondition: previous_ptr points to a node in a linked list, and this // is not the tail node of the list. // Postcondition: The node after previous_ptr has been removed from the // linked list. // // void list_clear(node*& head_ptr) // Precondition: head_ptr is the head pointer of a linked list. // Postcondition: All nodes of the list have been returned to the heap, // and the head_ptr is now NULL. // // void list_copy(const node* source_ptr, node*& head_ptr, node*& tail_ptr) // Precondition: source_ptr is the head pointer of a linked list. // Postcondition: head_ptr and tail_ptr are the head and tail pointers for // a new list that contains the same items as the list pointed to by // source_ptr. The original list is unaltered. // void list_piece( // const node* start_ptr, const node* end_ptr, // node*& head_ptr, node*& tail_ptr // ) // Precondition: start_ptr and end_ptr are pointers to nodes on the same // linked list, with the start_ptr node at or before the end_ptr node // Postcondition: head_ptr and tail_ptr are the head and tail pointers for a // new list that contains the items from start_ptr up to but not including // end_ptr. The end_ptr may also be NULL, in which case the new list // contains elements from start_ptr to the end of the list. // // DYNAMIC MEMORY usage by the toolkit: // If there is insufficient dynamic memory, then the following functions throw // bad_alloc: the constructor, list_head_insert, list_insert, list_copy, // list_piece.

#ifndef MAIN_SAVITCH_NODE1_H #define MAIN_SAVITCH_NODE1_H #include // Provides size_t and NULL

namespace main_savitch_5 { class node { public: // TYPEDEF typedef double value_type; // CONSTRUCTOR node( const value_type& init_data = value_type( ), node* init_link = NULL ) { data_field = init_data; link_field = init_link; }

// Member functions to set the data and link fields: void set_data(const value_type& new_data) { data_field = new_data; } void set_link(node* new_link) { link_field = new_link; }

// Constant member function to retrieve the current data: value_type data( ) const { return data_field; }

// Two slightly different member functions to retreive // the current link: const node* link( ) const { return link_field; } node* link( ) { return link_field; } private: value_type data_field; node* link_field; };

// FUNCTIONS for the linked list toolkit std::size_t list_length(const node* head_ptr); void list_head_insert(node*& head_ptr, const node::value_type& entry); void list_insert(node* previous_ptr, const node::value_type& entry); node* list_search(node* head_ptr, const node::value_type& target); const node* list_search (const node* head_ptr, const node::value_type& target); node* list_locate(node* head_ptr, std::size_t position); const node* list_locate(const node* head_ptr, std::size_t position); void list_head_remove(node*& head_ptr); void list_remove(node* previous_ptr); void list_clear(node*& head_ptr); void list_copy(const node* source_ptr, node*& head_ptr, node*& tail_ptr); }

#endif

============================================================

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Databases questions