Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Is the function being called correctly? format shorteng r = linspace(0.1,4,500); % Distance in Angstrom re = 0.7414; % Equilibrium Seperation D = 38292; %

Is the function being called correctly?

format shorteng

r = linspace(0.1,4,500); % Distance in Angstrom re = 0.7414; % Equilibrium Seperation D = 38292; % Dissoc Enrgey [cm^-1] twoBeta = 1.4426;

Vm = morse_potential(D, twoBeta, re, r); % Call Morse Potential Function

plot(r,Vm, 'g-','Linewidth',2) xlabel('Distance [A]') ylabel('Potential Energy [cm^-1]') title('Morse Potential of Hydrogens') ylim([0,5e4]) grid 'on' hold on

D2 = 38292; % Equiibrium distance re2 = 0.7413; % Width of the potential well for H2 twoBeta2 = 1.4433; r = linspace(0.4,4,500); % Seperation distances

Vm2 = morse_potential(D2, twoBeta2, re2, r); plot(r,Vm) hold on

D3 = 38292; % Equiibrium distance re3 = 0.7417; % Width of the potential well for H2 twoBeta3 = 1.4446; r = linspace(0,4,500); % Seperation distances Vm3 = morse_potential(D3, twoBeta3, re3, r); plot(r,Vm,'r--', 'Linewidth', 1)

x1 = [0.29,4]; y1 = [3.82e4,3.82e4]; plot(x1,y1,':r','linewidth', 2)

legend('Hydrogen','Hydrogen Deuteride','Deuterium','DissEnergy') hold off

%% Metal Hydrides figure(2) format SHORTENG r = linspace(0.1,4,500); % Distance in Angstrom re = 1.5947; % Equilibrium Seperation D = 7660; % Dissoc Enrgey [cm^-1] twoBeta = 3.5536;

Vm = morse_potential(D, twoBeta, re, r); % Call Morse Potential Function

plot(r,Vm, 'g-','Linewidth',2) xlabel('Distance [A]') ylabel('Potential Energy [cm^-1]') title('Potential of Metal Hydrides') ylim([0,1e4]) grid 'on' hold on

D2 = 6184; % Equiibrium distance re2 = 1.762; % Width of the potential well twoBeta2 = 3.901; r = linspace(0.1,4,500); % Seperation distances

Vm2 = morse_potential(D2, twoBeta2, re2, r); plot(r,Vm2, 'b-','Linewidth',2) hold on

D3 = 3695; % Equiibrium distance re3 = 1.741; % Width of the potential well for H2 twoBeta3 = 4.844; r = linspace(0,4,500); % Seperation distances Vm3 = morse_potential(D3, twoBeta3, re3, r); plot(r,Vm3,'r--', 'Linewidth', 1.5) hold on x1 = [1.3,4]; y1 = [7.65e3,7.65e3]; plot(x1,y1,':r','linewidth', 2) x2 = [1.46,4]; y2 = [6.1e3,6.1e3]; plot(x2,y2,':r','linewidth', 2) x3 = [1.5,4]; y3 = [3.7e3,3.7e3]; plot(x3,y3,':r','linewidth', 2) legend('Zinc Hydride','Cadium Hydride','Mercury Hydride','DissEnergy') hold off

function [Vm] = morse_potential(D,twoBeta, re, r) %----------------------------------------------------------------------- % Function Description: Computes the Morse Potential for a diatomic % molecule % ---Inputs--- % Input1: D - Energy required to break the moclecuar bond % Input2: twoBeta - Morse potential parameter [Controls width of well] % Input3: re - Equilibrium seperatin distance % Input4: r - Seperation distance % ---Outputs--- % Output1: Vm - Potential energy as a function of seperation distance

%% Morse Potential % Compute xi xi = (r - re)./re; %[R, Re] = meshgrid(r,re); %xi = (R - Re)./Re; % Compute x x = twoBeta.* xi;

% Compute Vm Vm = D'.*(1-exp(-x)).^2;

am i calling the morse_potential function correctly? the code is not consistent from hyrogens to metal hydrides

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Managing Your Information How To Design And Create A Textual Database On Your Microcomputer

Authors: Tenopir, Carol, Lundeen, Gerald

1st Edition

1555700233, 9781555700232

More Books

Students also viewed these Databases questions

Question

What are two main differences between a WAN and a LAN?

Answered: 1 week ago

Question

Employ effective vocal cues Employ effective visual cues

Answered: 1 week ago