Question
*****Java***** NOTE: You can only change the below class HW8_P3 class HW8_P3{ // write your code, you can add more methods public static BST convert(MaxHeap
*****Java*****
NOTE: You can only change the below class HW8_P3
class HW8_P3{
// write your code, you can add more methods
public static BST convert(MaxHeap maxHeap){
The problem is to convert the given Max Heap into a binary search tree (BST) with the condition that the final BST needs to be also a complete binary tree.
Note We assume that:
- The number of elements in the Max Heap tree is always 2^L - 1 , which L is the number of levels in the tree.
- There is no duplicate element in the Max Heap.
Example:
Input (max heap):
7 / \ 6 5 / \ / \ 3 4 1 2
Output (BST):
4 / \ 2 6 / \ / \ 1 3 5 7
import java.util.*;
import java.lang.*;
import java.io.*;
class MaxHeap
private java.util.ArrayList
/** Create a default heap */
public MaxHeap() {
}
/** Create a heap from an array of objects */
public MaxHeap(E[] objects) {
for (int i = 0; i < objects.length; i++)
add(objects[i]);
}
/** Add a new object into the heap */
public void add(E newObject) {
list.add(newObject); // Append to the heap
int currentIndex = list.size() - 1; // The index of the last node
while (currentIndex > 0) {
int parentIndex = (currentIndex - 1) / 2;
// Swap if the current object is greater than its parent
if (list.get(currentIndex).compareTo(
list.get(parentIndex)) > 0) {
E temp = list.get(currentIndex);
list.set(currentIndex, list.get(parentIndex));
list.set(parentIndex, temp);
}
else
break; // the tree is a heap now
currentIndex = parentIndex;
}
}
/** Remove the root from the heap */
public E remove() {
if (list.size() == 0) return null;
E removedObject = list.get(0);
list.set(0, list.get(list.size() - 1));
list.remove(list.size() - 1);
int currentIndex = 0;
while (currentIndex < list.size()) {
int leftChildIndex = 2 * currentIndex + 1;
int rightChildIndex = 2 * currentIndex + 2;
// Find the maximum between two children
if (leftChildIndex >= list.size()) break; // The tree is a heap
int maxIndex = leftChildIndex;
if (rightChildIndex < list.size()) {
if (list.get(maxIndex).compareTo(
list.get(rightChildIndex)) < 0) {
maxIndex = rightChildIndex;
}
}
// Swap if the current node is less than the maximum
if (list.get(currentIndex).compareTo(
list.get(maxIndex)) < 0) {
E temp = list.get(maxIndex);
list.set(maxIndex, list.get(currentIndex));
list.set(currentIndex, temp);
currentIndex = maxIndex;
}
else
break; // The tree is a heap
}
return removedObject;
}
/** Get the number of nodes in the tree */
public int getSize() {
return list.size();
}
}
class BST {
TreeNode root;
// insert method to add elements to BST
public void insert(int key){
TreeNode newNode = new TreeNode(key);
if(root == null){
root = newNode;
}else{
TreeNode current = root;
TreeNode parent;
while(true){
parent = current;
if(key < current.element){
current = current.left;
if(current == null){
parent.left = newNode;
return;
}
}else{
current = current.right;
if(current == null){
parent.right = newNode;
return;
}
}
}
}
}
//Print the elements of the BST level by level staring from root
public void breadthFirst(){
Queue q = new LinkedList
if(root!= null)
q.add(root);
while(!q.isEmpty()){
TreeNode current = (TreeNode) q.remove();
System.out.print(current.element + " " );
if(current.left != null)
q.add(current.left);
if(current.right != null)
q.add(current.right);
}
}
private class TreeNode {
int element;
TreeNode left;
TreeNode right;
public TreeNode(){}
public TreeNode(int e){
this.element = e;
}
}
}
class HW8_P3{
// write your code, you can add more methods
public static BST convert(MaxHeap maxHeap){
}
}
class DriverMain{
public static void main(String args[]){
Scanner input = new Scanner(System.in);
String str = input.nextLine();
input.close();
int[] list = Arrays.stream(str.substring(0, str.length()).split("\\s"))
.map(String::trim).mapToInt(Integer::parseInt).toArray();
// create Max heap and adding the elements
MaxHeap maxHeap= new MaxHeap();
for (int i = 0; i < list.length; i++)
maxHeap.add(list[i]);
//convert the BFS to MaxHeap
BST bsTree = HW8_P3.convert(maxHeap);
// print BST using BFS (level by level order)
bsTree.breadthFirst();
}
}
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started