Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

main.cpp #include #include ArrayList.h #include using namespace std; /* * Program to test the ArrayList class. */ int main() { srand((unsigned)time(0)); //list creation ArrayList numbers;

main.cpp

#include #include "ArrayList.h" #include

using namespace std;

/* * Program to test the ArrayList class. */ int main() { srand((unsigned)time(0));

//list creation ArrayList numbers;

for (int i = 0; i<20; i++) { numbers.add(rand()%100); }

//printing the list cout << "List of numbers:" << endl <<"\t"; numbers.display();

int x;

//searching with sequential search cout << endl << "(Sequential Search) Enter a number: "; cin >> x;

if (numbers.sequentialSearch(x)) cout << "Found!" << endl; else cout << "Not found!" << endl;

//Sorting the list numbers.quicksort();

cout << endl << "Sorted list of integers:" << endl <<"\t"; numbers.display();

//searching with sorted search cout << endl << "(Sorted Search) Enter a number: "; cin >> x;

if (numbers.sortedSearch(x)) cout << "Found!" << endl; else cout << "Not found!" << endl;

//searching with binary search cout << endl << "(Binary Search) Enter a number: "; cin >> x;

if (numbers.binarySearch(x)) cout << "Found!" << endl; else cout << "Not found!" << endl;

return 0; }

ArrayList.h

class ArrayList { public: ArrayList (); ~ArrayList(); bool isEmpty(); void display(); void add(int); void removeAt(int); void bubbleSort(); void quicksort(); bool sequentialSearch(int); bool sortedSearch(int); bool binarySearch(int); private: void quicksort(int, int); int findPivotLocation(int, int); int SIZE; //size of the array that stores the list items int *list; //array to store the list items int length; //amount of elements in the list };

ArrayList.cpp

#include #include "ArrayList.h"

using namespace std;

/* * Default constructor. Sets length to 0, initializing the list as an empty * list. Default size of array is 20. */ ArrayList::ArrayList() { SIZE = 20; list = new int[SIZE]; length = 0; }

/* * Destructor. Deallocates the dynamic array list. */ ArrayList::~ArrayList() { delete [] list; list = NULL; }

/* * Determines whether the list is empty. * * Returns true if the list is empty, false otherwise. */ bool ArrayList::isEmpty() { return length == 0; }

/* * Prints the list elements. */ void ArrayList::display() { for (int i=0; i < length; i++) cout << list[i] << " "; cout << endl; }

/* * Adds the element x to the end of the list. List length is increased by 1. * * x: element to be added to the list */ void ArrayList::add(int x) { if (length == SIZE) { cout << "Insertion Error: list is full" << endl; } else { list[length] = x; length++; } }

/* * Removes the element at the given location from the list. List length is * decreased by 1. * * pos: location of the item to be removed */ void ArrayList::removeAt(int pos) { if (pos < 0 || pos >= length) { cout << "Removal Error: invalid position" << endl; } else { for ( int i = pos; i < length - 1; i++ ) list[i] = list[i+1]; length--; } }

/* * Bubble-sorts this ArrayList */ void ArrayList::bubbleSort() { for (int i = 0; i < length - 1; i++) for (int j = 0; j < length - i - 1; j++) if (list[j] > list[j + 1]) { //swap list[j] and list[j+1] int temp = list[j]; list[j] = list[j + 1]; list[j + 1] = temp; } }

/* * Quick-sorts this ArrayList. */ void ArrayList::quicksort() { quicksort(0, length - 1); }

/* * Recursive quicksort algorithm. * * begin: initial index of sublist to be quick-sorted. * end: last index of sublist to be quick-sorted. */ void ArrayList::quicksort(int begin, int end) { int temp; int pivot = findPivotLocation(begin, end);

// swap list[pivot] and list[end] temp = list[pivot]; list[pivot] = list[end]; list[end] = temp;

pivot = end;

int i = begin, j = end - 1;

bool iterationCompleted = false; while (!iterationCompleted) { while (list[i] < list[pivot]) i++; while ((j >= 0) && (list[pivot] < list[j])) j--;

if (i < j) { //swap list[i] and list[j] temp = list[i]; list[i] = list[j]; list[j] = temp;

i++; j--; } else iterationCompleted = true; }

//swap list[i] and list[pivot] temp = list[i]; list[i] = list[pivot]; list[pivot] = temp;

if (begin < i - 1) quicksort(begin, i - 1); if (i + 1 < end) quicksort(i + 1, end); }

/* * Computes the pivot location. */ int ArrayList::findPivotLocation(int b, int e) { return (b + e) / 2; }

/* * Determines if an item exists in the array list using sequential (linear) * search. * * x: item to be found. * * Returns true if x is found in the list, false otherwise. */ bool ArrayList::sequentialSearch(int x) { for (int i=0; i < length; i++) if (list[i] == x) return true; // x is in the array

return false; // x is not in the array }

/* * Determines if an item exists in the array list using sorted search. * Precondition: list must be sorted. * * x: item to be found. * * Returns true if x is found in the list, false otherwise. */ bool ArrayList::sortedSearch(int x) { int i = 0; while (i < length && list[i] < x) i++;

if (i < length && list[i] == x) return true; // x is in the array else return false; // x is not in the array }

/* * Determines if an item exists in the array list using binary search. * Precondition: list must be sorted. * * x: item to be found. * * Returns true if x is found in the list, false otherwise. */ bool ArrayList::binarySearch(int x) { int first = 0, last = length - 1, pivot;

bool found = false; while (first <= last && !found) { pivot = (first + last) / 2; if (list[pivot] == x) found = true; else if (x < list[pivot]) last = pivot - 1; else first = pivot + 1; }

if (found) return true; else return false; }

Exercise 2

Expand the project developed in the previous exercise to perform the following experiment: Time the sequential search and the binary search methods several times each for randomly generated values, then record the results in a table. Do not time individual searches, but groups of them. For example, time 100 searches together or 1,000 searches together. Compare the running times of these two search methods that are obtained during the experiment.

Regarding the efficiency of both search methods, what conclusion can be reached from this experiment? In addition to the source code and a screenshot of the execution window, please submit a separate document with the table and your conclusions about the experiment.

Exercise 3

Design and implement an algorithm that determines whether or not a given array of integers, list1, is completely contained within another given array of integers, list2. Consider two different scenarios: (1) Both arrays are unsorted and (2) both arrays are sorted and write functions unsortedSearch and sortedSearch for (1) and (2), respectively. Your algorithm for (2) is expected to be more efficient than the one for (1).

Exercise 4

Design and implement a hash function that converts a string to a hash value. Test your function by computing the hash values for the C++ keywords.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Beginning C# 2005 Databases

Authors: Karli Watson

1st Edition

0470044063, 978-0470044063

More Books

Students also viewed these Databases questions