Question
Minimize and maximize these variables and these functions? This is a genetic multi-objective algorithm of a turbojet two spool afterburner engine. The idea is
Minimize and maximize these variables and these functions?
This is a genetic multi-objective algorithm of a turbojet two spool afterburner engine. The idea is to see in 3D Pareto front maximizing and minimizing the functions in relation to the constraints and to opt for the best overall design.
Establish realistic values for the variables and equations .
Variables and equations:
%variables
f=1; % f= fuel to air ratio
Fn=2; % Fn= net thurst
m0=3; % m0= air mass flow rate
p3=4; % p3=inlet pressure
Tpz=5; % Tpz=primary zone temperature
o=6; % o=equivalence ratio
t=7; % t=residence time
aa=8; % aa=pressure term
WTO=9; % Wto=take off weight
WLanding=10; % Wlanding=landing weight
WF=11; % Wf=fuel weight
WE=12; % WE=empty weight
WPL=13; % Wpl=payload weight
WC=14; % Wc=crew weight
M=15; % Fuel load mass
Fab=16; % afterburner fuel-to-air ratio
V9=17; % exhaust velocity
V0=18; % cruising speed
f=19; % fuel to air ratio
QR=20; % fuel heating value
NB=21; % burner efficiency
T1=22; % inlet temperature
T0=23; % ambient static temperature
L=24; % lift
p=25; % density
V=26; % velocity
A=27; % wing area
bw=28; % wing span
sw=29; % Trapezoidal wing area in ft
WZF=30; % zero fuel weight
b=31; % upper dimension of wing
cr=32; % right dimension side of wing
ct=33; % left dimension side of wing
WS=34; % wing span
RC=35; % root chord
l=36; % lenght
m=37; % moment
W0=38; % gross weight of aicraft
VH=39; % maximum demonstrated level airpeed
VS=40; % stalling speed
VS1=41; % stalling speed with flaps retracted
KG=42; % Gust alleviation factor
UREF=43; % reference gust velocity
VC=44; % design cruise speed
pi=3.14; % pi number
Ude=45; % vertical gust velocity
x=46; % distance in ft penetrated into the gust
CMGC=47; % Mean geometric chord
UG=48; % i dont know the name
D=49; % Drag
Y=Wi/Wf; % fuel weight fraction for the cruise segment
Y1=49;
CL=51; % lift coefficient
CD=52; % drag coefficient
A=53; % Area
%Maximize this ones
NP=((Fn/m0)*V0)/((1+f+Fab)*((V9^2)/2)-((V0^2)/2); % propulsive efficiency
NO=((Fn/m0)*V0)/(f*QR*NB); % overall efficiency
TE=1-(1/(T1/T0)); % thermal efficiency
T=m0*V0; % Thurst
%and Minimize this ones :
TSFC =(f/(Fn/m0)); % TSFC=specific fuel consumption
Nox=(10^13)*(p3/(1.4*(10^6)))*exp(-71442/Tpz)*(7.56*(o^7.2)-1.6)*(t^0.64); % NOx Emissions (LTO)
WF=WTO-WLanding; % Fuel Weight
WTO=WT0*(1-(WF/WTO)-(WE/WTO)); % take off weight
WTO=WPL/WC; % take off weight
maxFT=M/(TSFC/Fn); % max flight time
%constraints to apply
CLmin=L/(p*(V^2)*(A/2)); % maximum lift coefficient
CLmax=L/(p*(V^2)*(A/2));% maximum lift coefficient % maximum lift coefficient
WW=(17*bw*sw*sqrt(WZF/WTO)); % wing weight
S=b*((cr+ct)/2); % wing planform area
WV=(5*WS*RC*l)/0.5; % wing volume
PM=m/(0.5*p*V^2)*(A^2); % Pitching moment
LF=2.1+(24000/(W0+10000)); % Load factor
MaximumDCS=33*sqrt((W0)/S)); % minimum design cruising speed
MinimumDCS=0.9*VH; % maximum design cruising speed
DDS=VD>1.4*MinimumDCS; % design dive speed
nplus=(0.003388*(V^2)*S*CLmax)/W0; % Positive stall line:
nless=(-0.003388*(V^2)*S*CLmin)/W0; % Negative stall line:
VA=VS*sqrt(nplus); % maneuvering speeds
VG=sqrt((2*nless*W)/(p*S*CLmin)); % maneuvering speeds
DSMGI=VS1*((KG*UREF*VC*a)/498*W0)^1/3; % Design speed for maximum Gust Intensity
GLF=(Ude/2)*(1-cos(2*pi*x/(25*CMGC)) % Gust load factor
GAF=0.88*UG/(5.3+UG); % Gust alleviation factor
R=(V/TSFC)*(L/D)*ln(Wi/WF); % Range
E=((1/TSFC)*(CL/CD)*ln(Wo/W1)); % Endurance
M=p*A*V; % mass flow rate
MODEL CODE:
% Define the optimization variables
vars = optimvar('vars', 4, 'LowerBound', [0 0 0 0], 'UpperBound', [2000 800 30 10]);
% Define the objective functions
f(1) = specific_fuel_consumption(vars(1), vars(2), vars(3), vars(4));
f(2) = NOx_emissions(vars(1), vars(2), vars(3), vars(4));
f(3) = fuel_weight(vars(1), vars(2), vars(3), vars(4));
f(4) = Wto(vars(1), vars(2), vars(3), vars(4));
f(5) = flight_time(vars(1), vars(2), vars(3), vars(4));
g(1) = propulsive_efficiency(vars(1), vars(2), vars(3), vars(4));
g(2) = overall_efficiency(vars(1), vars(2), vars(3), vars(4));
g(3) = thermal_efficiency(vars(1), vars(2), vars(3), vars(4));
g(4) = thurst(vars(1), vars(2), vars(3), vars(4));
% Define the optimization problem
prob = optimproblem('Objective', [f, -g]);
% Define the constraints
prob.Constraints.con1 = vars(1) <= 2000;
prob.Constraints.con2 = vars(2) <= 800;
prob.Constraints.con3 = vars(3) <= 30;
prob.Constraints.con4 = vars(4) <= 10;
% Define the solver options
options = optimoptions('gamultiobj', 'PlotFcn', 'gaplotpareto');
% Solve the problem
[x, fval, exitflag, output] = gamultiobj(@(x) evaluate_objective(x), 4, [], [], [], [], [0 0 0 0], [2000 800 30 10], @(x) evaluate_constraints(x), options);
% Plot the 3D Pareto front
pareto(fval(:,1), -fval(:,2), -fval(:,3));
xlabel('Structures');
ylabel('Aerodynamics');
zlabel('Propulsion');
King Regards
Step by Step Solution
There are 3 Steps involved in it
Step: 1
To establish realistic values for the variables and equations in the genetic multiobjective algorith...Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started