Question
Now that you've seen the results of the sprinkler data analysis, what do you recommend that marketing management do with the less than spectacular results?
Now that you've seen the results of the sprinkler data analysis, what do you recommend that marketing management do with the less than spectacular results? What other analyses would you recommend? What data do you wish you had?
Words required:5-1000Words written: 0
- visibility
- Answers are visible to other students
- lock
- You cannot edit your answer(s)
Submit Answer
.
Let'scontinueourwalkthroughtheworldoflogisticregressionwithanewdatasetandalittlebitdifferentkindofanalysisthatwe'regoingtobedoing.Iwanttoshowyouhowsometimesusingdifferentdatatypescanproducevery,vastlydifferentresultsusinglogisticregressionandsometimesresultsthatarekindofdifficulttointerpret,atleastinhardquantifiableterms.Thisisaninterestingdatasetthatalsoshowsthatsometimestheoverallmodelingprocessdoesn'treallytakeyouanywhereveryspecific.
Let'stakealookatthedatabydescribingitfirstandwhatitrepresents.Thisisdatafromanationalchainofcompaniesthatselllawnirrigationequipment.Andwhattheywantedtodowasbeabletopredictthefactorsthatmostpredictwhetherornotafacilitiesmanagerorothergroundskeeperwouldbeinterestedinbuyinganirrigationsystemorasprinklersystemfortheirproperty.
Now,thisisn'tforresidentialit'sforcommercial.Andsotheyconductedasurveyofotherfacilitiesmanagersofdifferentkindsofcommercialfacilitiesandgatheredsomeinformationfromthemandtriedtouseitinalogisticregressiontoexplainwhetherornottherewasactuallyasprinklersysteminstalledonthepropertygroundsorwhethertherewasn't.Thehopewastobeabletoidentifythefactorsthathadledpeopleinthepasttoinstallsprinklersystems,andthentobeabletodevelopacustomerprofileofthosewhowouldbemostlikelytobuybasedonthepropertytypeandsomeothervariables.
Sothroughthissurvey,theyaskedseveralquestionsthatIhavesortofidentifiedhereinthisdata.Firstisthefacilitytype.Thatis,whatwasthemainuseofthefacilitythatthefacilitiesmanagerworkedat?Wasitprimarilyofficeorretail?Orwasitprimarilyaprimarilywarehouseorindustrial?Noticethatthisisacategoricalvariable.It'skindoflikesex,numberreallydoesn'tmeananythinghere.Sowe'llhavetotreatitassuchwhenwegetreadytomodelit.
Nextwasascaleditemofthefacilitiesmanagerabouthowimportantitwastothemorthebuilding'sownerabouttheappearanceofthebuildingtothegeneralpublic.Becausesomebuildings,particularlyifthey'reheavyindustrialorsomethinglikethat,appearanceandlandscapingisnotsomethingthat'sterriblyimportanttoallbuildingtypes.Whereasifyouhavearetailbuilding,forexample,thenitmightbe.Sowhetheritwasnotatallimportantuptoveryimportant,soordinaldatatobeusedhere.
Nextwasthegreenspacesize.Now,greenspacesizediffersagreatdeal.Anditdiffersalongacoupleofdimensions.What'sthepercentageofthetotallotsizethatisgreenspace?Andwhat'sthetotalsizeofthelot?Someasuringthisusingratiodatawouldhavebeenkindofdifficult.Icouldhavealotofgreenspaceonasmalllotthat'salmostallspace.
Someasuringitinsquarefeetoranythinglikethatrelativetolotsizewouldhavebeenkindofdifficult.Sooneofthethingsthatwedidinthisparticularsurveywastoasktheminanordinalnaturewhetherornottherewaslittle or nogreenspace,justaslightamount,amoderateamount,averylargeamount,andsoforth.Sowetookthisthingthatnormallywouldbeexpressedinsomethinglikesquarefeetoracresandwehadthemtranslateitintowhethertheyfeltlikeitwasalittleoralot.
Nextwasthesquarefootageofthebuildingsthattheymanagedatthatfacilityonascalefrom1to6dependingonbuildingsize.I'vecodeditasordinaldata,itwon'tmakeanydifference.Youcouldreasonablysaythatit'sratiodata,butitwon'tmakeanydifferencetotheanalysis.Butitwillmakealittledifferencetotheinterpretation,soI'llbesureandpointthatout.
Nextisthenumberofvisitorstothepropertyperdaywith1beingvery fewerthan100,morethanbeing5,000ormoreinthecaseoflargeretailoperations,andthenfinallyaddedsomeadditionaldatabasedonthezipcodefromwhich thefacilitywaslocatedastowhattheaverageannualrainfallinthatparticularareawas,whichobviouslymightalsoaffectwhetherornotwewantalawnirrigationorsprinklersystemonourcommercialproperty.
Sokindofalongwindedexplanation,butIthinkit'simportanttogetanideaofthekindofdatathatyou'reusing.We'regoingtorunthroughtheoutputofthelogisticregressionprettyquickly,becausewespentalotoftimeonitwhenwewerelookingatthecellphonedata.AndIjustwanttokindofgetdowntothenittygrittyofthisandshowyousomeimportantpointsaboutit.
Sowe'regoingtogotoRegression,BinaryLogistic.We'regoingtoaskastheSPSStodesignatethis--isthesprinklersysteminstalledonthepropertyornot--asourdependentvariable.Andwe'regoingtousealloftheseothervariablesasourindependentvariables,notourcovariants,butareindependentvariables.Andthenwe're going todesignatethemainuseofthefacilityasacategoricalvariable.AndI'llleaveitaslast.Ifitbecomesdifficulttointerpret,ifIneedto,thenIcanchangeittofirstlaterintermsofidentifyingmyreferenceandcomparisonlevelofcategory.
Allright,that'sallIneedtodo.Let'sgoaheadandclickOK.Andwe'renotgoingtotalkaboutallofthesedifferentdiagnosticinformationatthefront.We'resimplygoingtogettoblockone,whichistheonewe'reinterestedin,andwe'regoingtotakealookatsomeofthedifferentmetricsofsuccesshere.OurNaglekerkeRsquareis0.20,notasgoodaslasttime,butit'sallright.
Itdiddoafairlygoodjobofclassifyingresultshereuptoaround70%,soI'mnotunhappywiththat.Anditwasareasonablygoodintermsofclassifyingwhetherornotithadnosysteminvolvedversushavingasysteminvolved,butthemodelwasfarbetteratpredictingwhethertherewasasystemrelativetowhethertherewasn'tasystem.Andthatlittlebitof asymmetryisnotabigproblem,butwesurelikeitwhentheycancategorizewellbothsidesofthebinarydependentvariable.
Anddownhere,wehavewheretheactionis,whatwewanttolookatintermsofthemodelingprocess,andjustbeabletopickoutthosevariablesthatarestatisticallysignificant,thosethatarenot,andbeabletoeliminatefromthemodelthosethatarenotsowewindupwithaniceparsimoniousfinalmodel.Well,facilitytypegreaterthan0.5,sowe'llgetridofit.We'llgetridoftheappearanceimportance,becauseitwasn'tsignificanteither,whichsurprisedmealittlebit,butitdidn'tcrackoutsothere'snoreasontokeepit.
Wearegoingtokeepthe greenspacesizewhichseemstomatter.Andthatseemstomakesensetome.Thesizeofthebuildingdoesn'tmatter.Andthatactuallymakessense,becausealotoffacilitieshavealargegroundswithhugelongspaceinonlyasmallbuilding.Otherlocationsmayhavethebuildingtakingupalmosttheentirelot.Sothebuildingsizemaynotalwaysbereallydependentorrelatedtotheoverallsizeofthegreenspace.Sothisisnotonethatsurprisesmealtogether.Thenumberofvisitors?Thatoneactuallydoesn'tsurprisememucheither.Itwasjustavariableweincludedsimplybecauseitseemedtomakesenseandmighthaveagoodpossibilityofincludingitandcollectingtheinformationwasn'treallyallthatdifficulteither.
Annualrainfall?Obviously,that'sanimportantvariableanditcamebackashighlysignificant.Sowereallyonlyhavetwothatwewanttofocusonatthispoint--theamountofrainfallandthe greenspacesize.Therestofthesesortoffalloff,allright?Solet'sgoaheadandtakealookatthesedatabygoingbackandlookingatthe greenspacesizeandtheannualrainfallandseeingwhatourmodellookslikeattheend.
Sowe'llgothroughandwe'llhitourbinarylogistic.Andwe'lleliminatealloftheseothervariablesthatwerenon-significantfromthemodel.Facilitytypegoes.Theappearanceimportancegoes,whichreallykindofsurprisedme.Thebuildingsizegoes.Thenumberofvisitorsgoes.Andwe'releftwithtwovariableshere.Let'sgoaheadandclickOK.
Andhere'stheresultsthatwegetaswescrolldown.Noticethatitstillcorrectlycategorizesabout70%ofthem,buttheproportionofcorrectcategorizationsisaboutthesameaswell.NoticethatourNaglekerkeRsquareddidnotchange,Ithink,atall.Ifitdid,itwastinyandnoticethatallofourvariablesnow,orbothofthem,arestatisticallysignificant.
Solet'stakealookatinterpretingsomeoftheseintermsofouroddsratiosandseewhattheymean,allright?Now,inparticular,I'minterestedininterpretingthe greenspacesize.Whatdoesthatmean?Doesitmeanthatforeveryoneunitincreaseinspacesize,thentheoddsofneedingorhavingasprinklersystemgrowbyabout1.145times?
Allright,fine,butwhatdoesthatmean?Becauseifyou'llgobackandyou'lllookatthedata,thesizeofthegreenspace--aoneunitincrease,whatdoesthatmean?AsImovefromlittleornogreenspacetoaslightamounttoamoderateamount,usingthiskindofperceptualdataisusefulfortellingusthatgreenspaceisimportanttopredictinghowmuchofwhetherornotanareahasasprinklersystemornot,butbytheamountandactuallymakingsenseoftheoddsratiowhenyouusethosekindsofordinaldata,notsomuch.
Soeventhoughitisstatisticallysignificantasindicatedbythep-value,becausewe'veusedordinaldata,thisdoesn'treallymakeawholelotofsense.Theannualrainfalldoesmakemoresense,becauseit'sratiodataandit'sshowingusthat,foreveryinchofchangeinrainfall,theoddsgobyabout0.55to1.Andnoticethatit'snegative,andthatmakessenseaswell.Thatis,themorerainfall,thelessIneedanewsprinklersystemorwanttoinstallasprinklersystem,becauseIgetplentyofrain.ThelessrainfallIhave,themoreIneedasprinklersystem.ThemorerainfallIhave,thelessIdo.Itmakesperfectsense.
Sonow,let'skindoflookandseewhatwe'vedone.Westartedoffwithalotofdifferentvariables,mostofwhichwewoundupeliminating.Andthetwovariablesthatwehaveleftmakesensetohave--theamountofgreenspace,evenperceptuallytheamountofgreenspaceontheproperty,andtheamountofrainfallthatthepropertyhasonit.
Doesthatreallytellusanythingthatwedidn'tknowtostartwith?Doesthisreallygiveusagreatinsightintowhyitisthatpeoplewouldhaveasprinklersystemornot?Doesitreallyhelpusachievethegoalofthedata?Andthatispredictingthecustomertypeswhoaregoingtobemostlikelytowantsprinklersystemsontheircommercialpropertyinthefuture.Theanswerisreallynotawholelot.Itwouldmakesensetomethatifacompanyhadalotofgreenspaceinanareathatdidn'tgetalotofrain,theywouldbeinthemarketforasprinklersystemiftheydidn'talreadyhaveone.
Sosometimes,thesecomplicatedanalyzeswindupleadingyoutoconclusionswhereyousortofshrugyourshouldersandsay,well,youknowwhat?Itwasanicetry.AndmaybethereareotherthingsIcandowiththedata.Andinfact,inthiscase,therewere.Butusingalogisticregressionmodelwiththevariablesthatwehadatourdisposaltopredictwhoisorwhoisnotgoingtoneedagreenspacebasedontheinformationthatwehad--itdidn'tturnouttoproduceawholelotofinsightsmorethanweexpecteditto.
Butwhenthosekindsofanalyzesdo,t
heycanbereally,reallyhelpful.ButIdowanttosetyourexpectationsbysayingthatsometimesevenwell-conductedanalyzeswillleadyoutoaplacewhereyousay,well,youknowwhat?Ikindofalreadyknewthat.That'sOK.Marketinganalyticsisn't100%rightallofthetime.Andwhatyoudoisyousay,youknowwhat?Onbalance,it'smorevaluabletodoitthanitistonot.
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started