Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Now that you've seen the results of the sprinkler data analysis, what do you recommend that marketing management do with the less than spectacular results?

Now that you've seen the results of the sprinkler data analysis, what do you recommend that marketing management do with the less than spectacular results? What other analyses would you recommend? What data do you wish you had?

Words required:5-1000Words written: 0

  • visibility
  • Answers are visible to other students
  • lock
  • You cannot edit your answer(s)

Submit Answer

.

Let'scontinueourwalkthroughtheworldoflogisticregressionwithanewdatasetandalittlebitdifferentkindofanalysisthatwe'regoingtobedoing.Iwanttoshowyouhowsometimesusingdifferentdatatypescanproducevery,vastlydifferentresultsusinglogisticregressionandsometimesresultsthatarekindofdifficulttointerpret,atleastinhardquantifiableterms.Thisisaninterestingdatasetthatalsoshowsthatsometimestheoverallmodelingprocessdoesn'treallytakeyouanywhereveryspecific.

Let'stakealookatthedatabydescribingitfirstandwhatitrepresents.Thisisdatafromanationalchainofcompaniesthatselllawnirrigationequipment.Andwhattheywantedtodowasbeabletopredictthefactorsthatmostpredictwhetherornotafacilitiesmanagerorothergroundskeeperwouldbeinterestedinbuyinganirrigationsystemorasprinklersystemfortheirproperty.

Now,thisisn'tforresidentialit'sforcommercial.Andsotheyconductedasurveyofotherfacilitiesmanagersofdifferentkindsofcommercialfacilitiesandgatheredsomeinformationfromthemandtriedtouseitinalogisticregressiontoexplainwhetherornottherewasactuallyasprinklersysteminstalledonthepropertygroundsorwhethertherewasn't.Thehopewastobeabletoidentifythefactorsthathadledpeopleinthepasttoinstallsprinklersystems,andthentobeabletodevelopacustomerprofileofthosewhowouldbemostlikelytobuybasedonthepropertytypeandsomeothervariables.

Sothroughthissurvey,theyaskedseveralquestionsthatIhavesortofidentifiedhereinthisdata.Firstisthefacilitytype.Thatis,whatwasthemainuseofthefacilitythatthefacilitiesmanagerworkedat?Wasitprimarilyofficeorretail?Orwasitprimarilyaprimarilywarehouseorindustrial?Noticethatthisisacategoricalvariable.It'skindoflikesex,numberreallydoesn'tmeananythinghere.Sowe'llhavetotreatitassuchwhenwegetreadytomodelit.

Nextwasascaleditemofthefacilitiesmanagerabouthowimportantitwastothemorthebuilding'sownerabouttheappearanceofthebuildingtothegeneralpublic.Becausesomebuildings,particularlyifthey'reheavyindustrialorsomethinglikethat,appearanceandlandscapingisnotsomethingthat'sterriblyimportanttoallbuildingtypes.Whereasifyouhavearetailbuilding,forexample,thenitmightbe.Sowhetheritwasnotatallimportantuptoveryimportant,soordinaldatatobeusedhere.

Nextwasthegreenspacesize.Now,greenspacesizediffersagreatdeal.Anditdiffersalongacoupleofdimensions.What'sthepercentageofthetotallotsizethatisgreenspace?Andwhat'sthetotalsizeofthelot?Someasuringthisusingratiodatawouldhavebeenkindofdifficult.Icouldhavealotofgreenspaceonasmalllotthat'salmostallspace.

Someasuringitinsquarefeetoranythinglikethatrelativetolotsizewouldhavebeenkindofdifficult.Sooneofthethingsthatwedidinthisparticularsurveywastoasktheminanordinalnaturewhetherornottherewaslittle or nogreenspace,justaslightamount,amoderateamount,averylargeamount,andsoforth.Sowetookthisthingthatnormallywouldbeexpressedinsomethinglikesquarefeetoracresandwehadthemtranslateitintowhethertheyfeltlikeitwasalittleoralot.

Nextwasthesquarefootageofthebuildingsthattheymanagedatthatfacilityonascalefrom1to6dependingonbuildingsize.I'vecodeditasordinaldata,itwon'tmakeanydifference.Youcouldreasonablysaythatit'sratiodata,butitwon'tmakeanydifferencetotheanalysis.Butitwillmakealittledifferencetotheinterpretation,soI'llbesureandpointthatout.

Nextisthenumberofvisitorstothepropertyperdaywith1beingvery fewerthan100,morethanbeing5,000ormoreinthecaseoflargeretailoperations,andthenfinallyaddedsomeadditionaldatabasedonthezipcodefromwhich thefacilitywaslocatedastowhattheaverageannualrainfallinthatparticularareawas,whichobviouslymightalsoaffectwhetherornotwewantalawnirrigationorsprinklersystemonourcommercialproperty.

Sokindofalongwindedexplanation,butIthinkit'simportanttogetanideaofthekindofdatathatyou'reusing.We'regoingtorunthroughtheoutputofthelogisticregressionprettyquickly,becausewespentalotoftimeonitwhenwewerelookingatthecellphonedata.AndIjustwanttokindofgetdowntothenittygrittyofthisandshowyousomeimportantpointsaboutit.

Sowe'regoingtogotoRegression,BinaryLogistic.We'regoingtoaskastheSPSStodesignatethis--isthesprinklersysteminstalledonthepropertyornot--asourdependentvariable.Andwe'regoingtousealloftheseothervariablesasourindependentvariables,notourcovariants,butareindependentvariables.Andthenwe're going todesignatethemainuseofthefacilityasacategoricalvariable.AndI'llleaveitaslast.Ifitbecomesdifficulttointerpret,ifIneedto,thenIcanchangeittofirstlaterintermsofidentifyingmyreferenceandcomparisonlevelofcategory.

Allright,that'sallIneedtodo.Let'sgoaheadandclickOK.Andwe'renotgoingtotalkaboutallofthesedifferentdiagnosticinformationatthefront.We'resimplygoingtogettoblockone,whichistheonewe'reinterestedin,andwe'regoingtotakealookatsomeofthedifferentmetricsofsuccesshere.OurNaglekerkeRsquareis0.20,notasgoodaslasttime,butit'sallright.

Itdiddoafairlygoodjobofclassifyingresultshereuptoaround70%,soI'mnotunhappywiththat.Anditwasareasonablygoodintermsofclassifyingwhetherornotithadnosysteminvolvedversushavingasysteminvolved,butthemodelwasfarbetteratpredictingwhethertherewasasystemrelativetowhethertherewasn'tasystem.Andthatlittlebitof asymmetryisnotabigproblem,butwesurelikeitwhentheycancategorizewellbothsidesofthebinarydependentvariable.

Anddownhere,wehavewheretheactionis,whatwewanttolookatintermsofthemodelingprocess,andjustbeabletopickoutthosevariablesthatarestatisticallysignificant,thosethatarenot,andbeabletoeliminatefromthemodelthosethatarenotsowewindupwithaniceparsimoniousfinalmodel.Well,facilitytypegreaterthan0.5,sowe'llgetridofit.We'llgetridoftheappearanceimportance,becauseitwasn'tsignificanteither,whichsurprisedmealittlebit,butitdidn'tcrackoutsothere'snoreasontokeepit.

Wearegoingtokeepthe greenspacesizewhichseemstomatter.Andthatseemstomakesensetome.Thesizeofthebuildingdoesn'tmatter.Andthatactuallymakessense,becausealotoffacilitieshavealargegroundswithhugelongspaceinonlyasmallbuilding.Otherlocationsmayhavethebuildingtakingupalmosttheentirelot.Sothebuildingsizemaynotalwaysbereallydependentorrelatedtotheoverallsizeofthegreenspace.Sothisisnotonethatsurprisesmealtogether.Thenumberofvisitors?Thatoneactuallydoesn'tsurprisememucheither.Itwasjustavariableweincludedsimplybecauseitseemedtomakesenseandmighthaveagoodpossibilityofincludingitandcollectingtheinformationwasn'treallyallthatdifficulteither.

Annualrainfall?Obviously,that'sanimportantvariableanditcamebackashighlysignificant.Sowereallyonlyhavetwothatwewanttofocusonatthispoint--theamountofrainfallandthe greenspacesize.Therestofthesesortoffalloff,allright?Solet'sgoaheadandtakealookatthesedatabygoingbackandlookingatthe greenspacesizeandtheannualrainfallandseeingwhatourmodellookslikeattheend.

Sowe'llgothroughandwe'llhitourbinarylogistic.Andwe'lleliminatealloftheseothervariablesthatwerenon-significantfromthemodel.Facilitytypegoes.Theappearanceimportancegoes,whichreallykindofsurprisedme.Thebuildingsizegoes.Thenumberofvisitorsgoes.Andwe'releftwithtwovariableshere.Let'sgoaheadandclickOK.

Andhere'stheresultsthatwegetaswescrolldown.Noticethatitstillcorrectlycategorizesabout70%ofthem,buttheproportionofcorrectcategorizationsisaboutthesameaswell.NoticethatourNaglekerkeRsquareddidnotchange,Ithink,atall.Ifitdid,itwastinyandnoticethatallofourvariablesnow,orbothofthem,arestatisticallysignificant.

Solet'stakealookatinterpretingsomeoftheseintermsofouroddsratiosandseewhattheymean,allright?Now,inparticular,I'minterestedininterpretingthe greenspacesize.Whatdoesthatmean?Doesitmeanthatforeveryoneunitincreaseinspacesize,thentheoddsofneedingorhavingasprinklersystemgrowbyabout1.145times?

Allright,fine,butwhatdoesthatmean?Becauseifyou'llgobackandyou'lllookatthedata,thesizeofthegreenspace--aoneunitincrease,whatdoesthatmean?AsImovefromlittleornogreenspacetoaslightamounttoamoderateamount,usingthiskindofperceptualdataisusefulfortellingusthatgreenspaceisimportanttopredictinghowmuchofwhetherornotanareahasasprinklersystemornot,butbytheamountandactuallymakingsenseoftheoddsratiowhenyouusethosekindsofordinaldata,notsomuch.

Soeventhoughitisstatisticallysignificantasindicatedbythep-value,becausewe'veusedordinaldata,thisdoesn'treallymakeawholelotofsense.Theannualrainfalldoesmakemoresense,becauseit'sratiodataandit'sshowingusthat,foreveryinchofchangeinrainfall,theoddsgobyabout0.55to1.Andnoticethatit'snegative,andthatmakessenseaswell.Thatis,themorerainfall,thelessIneedanewsprinklersystemorwanttoinstallasprinklersystem,becauseIgetplentyofrain.ThelessrainfallIhave,themoreIneedasprinklersystem.ThemorerainfallIhave,thelessIdo.Itmakesperfectsense.

Sonow,let'skindoflookandseewhatwe'vedone.Westartedoffwithalotofdifferentvariables,mostofwhichwewoundupeliminating.Andthetwovariablesthatwehaveleftmakesensetohave--theamountofgreenspace,evenperceptuallytheamountofgreenspaceontheproperty,andtheamountofrainfallthatthepropertyhasonit.

Doesthatreallytellusanythingthatwedidn'tknowtostartwith?Doesthisreallygiveusagreatinsightintowhyitisthatpeoplewouldhaveasprinklersystemornot?Doesitreallyhelpusachievethegoalofthedata?Andthatispredictingthecustomertypeswhoaregoingtobemostlikelytowantsprinklersystemsontheircommercialpropertyinthefuture.Theanswerisreallynotawholelot.Itwouldmakesensetomethatifacompanyhadalotofgreenspaceinanareathatdidn'tgetalotofrain,theywouldbeinthemarketforasprinklersystemiftheydidn'talreadyhaveone.

Sosometimes,thesecomplicatedanalyzeswindupleadingyoutoconclusionswhereyousortofshrugyourshouldersandsay,well,youknowwhat?Itwasanicetry.AndmaybethereareotherthingsIcandowiththedata.Andinfact,inthiscase,therewere.Butusingalogisticregressionmodelwiththevariablesthatwehadatourdisposaltopredictwhoisorwhoisnotgoingtoneedagreenspacebasedontheinformationthatwehad--itdidn'tturnouttoproduceawholelotofinsightsmorethanweexpecteditto.

Butwhenthosekindsofanalyzesdo,t

heycanbereally,reallyhelpful.ButIdowanttosetyourexpectationsbysayingthatsometimesevenwell-conductedanalyzeswillleadyoutoaplacewhereyousay,well,youknowwhat?Ikindofalreadyknewthat.That'sOK.Marketinganalyticsisn't100%rightallofthetime.Andwhatyoudoisyousay,youknowwhat?Onbalance,it'smorevaluabletodoitthanitistonot.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Customer Service Career Success Through Customer Loyalty

Authors: Paul R. Timm

6th edition

133056252, 978-0132553001, 132553007, 978-0133056259

More Books

Students also viewed these Marketing questions

Question

How does complete writing improve ease of reading?

Answered: 1 week ago