Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

package Filter; import java.awt.*; import java.awt.event.*; import java.awt.image.*; import java.io.*; import javax.imageio.*; // Canvas for image display class ImageCanvas extends Canvas { BufferedImage image; //

package Filter;

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import java.io.*;

import javax.imageio.*;

// Canvas for image display

class ImageCanvas extends Canvas {

BufferedImage image;

// initialize the image and mouse control

public ImageCanvas(BufferedImage input) {

image = input;

addMouseListener(new ClickListener());

}

// redraw the canvas

public void paint(Graphics g) {

// draw boundary

g.setColor(Color.gray);

g.drawRect(0, 0, getWidth()-1, getHeight()-1);

// compute the offset of the image.

int xoffset = (getWidth() - image.getWidth()) / 2;

int yoffset = (getHeight() - image.getHeight()) / 2;

g.drawImage(image, xoffset, yoffset, this);

}

// change the image and redraw the canvas

public void resetImage(Image input) {

image = new BufferedImage(input.getWidth(null), input.getHeight(null), BufferedImage.TYPE_INT_RGB);

Graphics2D g2D = image.createGraphics();

g2D.drawImage(input, 0, 0, null);

repaint();

}

// listen to mouse click

class ClickListener extends MouseAdapter {

public void mouseClicked(MouseEvent e) {

if ( e.getClickCount() == 2 && e.getButton() == MouseEvent.BUTTON3 )

try {

ImageIO.write(image, "png", new File("saved.png"));

} catch ( Exception ex ) {

ex.printStackTrace();

}

}

}

}

package Filter;

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import java.io.*;

import javax.imageio.*;

// Main class

public class SmoothingFilter extends Frame implements ActionListener {

BufferedImage input;

ImageCanvas source, target;

TextField texSigma;

int width, height;

// Constructor

public SmoothingFilter(String name) {

super("Smoothing Filters");

// load image

try {

input = ImageIO.read(new File(name));

}

catch ( Exception ex ) {

ex.printStackTrace();

}

width = input.getWidth();

height = input.getHeight();

Panel main = new Panel();

source = new ImageCanvas(input);

target = new ImageCanvas(input);

main.setLayout(new GridLayout(1, 2, 10, 10));

main.add(source);

main.add(target);

Panel controls = new Panel();

Button button = new Button("Add noise");

button.addActionListener(this);

controls.add(button);

button = new Button("5x5 mean");

button.addActionListener(this);

controls.add(button);

controls.add(new Label("Sigma:"));

texSigma = new TextField("1", 1);

controls.add(texSigma);

button = new Button("5x5 Gaussian");

button.addActionListener(this);

controls.add(button);

button = new Button("5x5 median");

button.addActionListener(this);

controls.add(button);

button = new Button("5x5 Kuwahara");

button.addActionListener(this);

controls.add(button);

// add two panels

add("Center", main);

add("South", controls);

addWindowListener(new ExitListener());

setSize(width*2+100, height+100);

setVisible(true);

}

class ExitListener extends WindowAdapter {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

// Action listener for button click events

public void actionPerformed(ActionEvent e) {

// example -- add random noise

if ( ((Button)e.getSource()).getLabel().equals("Add noise") ) {

Random rand = new Random();

int dev = 64;

for ( int y=0, i=0 ; y

for ( int x=0 ; x

Color clr = new Color(source.image.getRGB(x, y));

int red = clr.getRed() + (int)(rand.nextGaussian() * dev);

int green = clr.getGreen() + (int)(rand.nextGaussian() * dev);

int blue = clr.getBlue() + (int)(rand.nextGaussian() * dev);

red = red 255 ? 255 : red;

green = green 255 ? 255 : green;

blue = blue 255 ? 255 : blue;

source.image.setRGB(x, y, (new Color(red, green, blue)).getRGB());

}

source.repaint();

}

}

public static void main(String[] args) {

new SmoothingFilter(args.length==1 ? args[0] : "baboo.png");

}

}

image text in transcribedThe four image smoothing filters you need to implement are 55 mean filter, 55 Gaussian

filter with user-specified parameter, 55 median filter, and 55 Kuwahara filter. Making use

of the most efficient implementation based on the property of the filters is required. Be careful

when handling pixels near the boundaries of the image. If a pixel is outside of the image, the

closest pixel that is in the image should be used.

Smoothing Filters Add noise 515 mean Sigma 5i5 Gaussian 5k5 median 5x5 Kuwahara 5x5 Gaussian 5x5 median 5x5 Kuwahara Smoothing Filters Add noise 515 mean Sigma 5i5 Gaussian 5k5 median 5x5 Kuwahara 5x5 Gaussian 5x5 median 5x5 Kuwahara

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Beyond Big Data Using Social MDM To Drive Deep Customer Insight

Authors: Martin Oberhofer, Eberhard Hechler

1st Edition

0133509796, 9780133509793

More Books

Students also viewed these Databases questions

Question

Provide an example of exploratory research. Discuss.

Answered: 1 week ago