Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

//// Please Solve the question using the outputs from stata given in the pictures //// 3) using data from the period 1993-2005, the panel data

//// Please Solve the question using the outputs from stata given in the pictures ////

3) using data from the period 1993-2005, the panel data model for tourism revenues from 25 countries is set up as follows.

INTGit= Bo + B1LNGTit +B2 lnTHit + B3lnINit+B4lnYSit + Uit

here INTGit: Logarithm of tourist revenues, INGTit: Logarithm of tourist revenues in countries, INTHit: Logarithm of tourist expenses, LNINit: Logarithm of internet users, INYSit: The logarithm of the number of beds.

A) the following are 27 printouts of test and model estimates. Decide on the final model by evaluating only the required tests in the appropriate order, which can be used in the model preference and in the test of deviations from the assumption. b) interpret from economical, statistical, and econometric angles so that only the modality you have selected does not exceed 1 page. c) If there is a deviation from the assumption that you cannot correct, discuss your solution suggestions.

Important NOTES on THE QUESTION: The order is very important, the order must be done correctly, otherwise this chic cannot be scored. the test you are evaluating in * a must be specified in which of the printouts. For example, if there are two F tests in the printout, it should be clearly written which one is mentioned, otherwise, no points can be taken from this chirpy. comment on the model in * b that you have decided is appropriate as a result of tests only, and your comments on a (1) page in b will not be evaluated. Test results that do not write hypotheses will not be evaluated. Apply a = 0.05 for the tests (the parameter may be taken a = 0.10 for the diagnostic tests).

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

kt 1 reg InTG InGT InYS INTH ININ Source SS df MS 325 = 466.27 0.0000 540.829307 135.207327 Model Residual Number of obs F(4, 320) Prob > F R-squared Adj R-squared Root MSE 92.7923767 320 .289976177 0.8536 Total 0.8517 .53849 633.621683 324 1.95562248 InTG Coef. Std. Err. t P>It [95% Conf. Interval] . 1745703 .4134838 .0315148 .046616 0355569 0.000 0.000 . 112568 .3217714 InGT InYS1 InTH InIN .2365726 .5051963 5.54 8.87 11.19 0.39 .3979775 0.000 .3280227 .4679323 .0076905 .0197941 0.698 -.0312525 0466336 _cons 1.281794 2352698 5.45 0.000 .8189227 1.744665 akt 2 quietly reg InTG InGT Inys InTH ININ estat vif Variable ! VIF 1/VIF InYS InTH1 InGT InIN 4.17 3.61 2.30 0.240065 0.277209 0.435503 0.496549 2.01 Mean VIF 1 3.02 325 25 kt 3 Xtreg InTG InGT Ines InTH ININ, fe Fixed-effects (within) regression Group variable: ulke R-sq: within = 0.6852 between = 0.7830 overall = 0.7758 Number of obs Number of groups obs per group min - avg = 13 13.0 max = 13 F(4,296) Prob > F 161.10 0.0000 corr(u_i, Xb) = -0.4726 InTG Coef. Std. Err. t p>It! [95% Conf. Interval] 0745109 8.70 .5014322 .7947088 .6480705 .2263757 0742988 3.05 InGT Inys InTH1 InIN 0.000 0.003 0.000 .3725966 .3428412 0385588 8.89 .4187253 .0801548 .2669572 -.0008525 -3.10603 1.88 0.062 .0355354 .0173414 -1.762927 .0092448 .6824673 cons -2.58 0.010 -.4198244 .73555192 sigma_u! sigma_e 1 rho . 19252429 .935884 (fraction of variance due to ui) F test that all u_i=0: F(24, 296) = 91.98 Prob > F = 0.0000 325 25 ikti 4 Xtreg InTG InGT InYS InTH ININ, re Random-effects GLS regression Group variable: ulke R-sq: within = 0.6803 between = 0.8193 overall = 0.8111 Number of obs Number of groups Obs per group: min - 13 avg - 13.0 13 max a Wald chi2(4) Prob > chi2 741.27 0.0000 corr(wi, X) = 0 (assumed) InTG Coef. Std. Err. 2 P> 121 [95% Conf. Interval] .4830361 8.14 .366784 InGT InYS .0593134 .0651705 .0369887 .2153166 .3678046 .0239369 0.000 0.001 0.000 0.006 3.30 9.94 2.75 .0875849 .295308 InTH1 .5992882 .3430484 .4403011 .0409698 InIN .0086904 .006904 cons -.4055832 .506827 -0.80 0.424 -1.398946 .5877794 sigma_u sigma_e1 rho 1 .53788695 . 19252429 .88643698 (fraction of variance due to u_1) kt 5 quietly xtreg InTG InGT Inys InTH ININ, re xttest1, unadjusted Tests for the error component model: InTG[ulke, t] = xb + uulke] + v[ulke, t] V[ulke,t] = lambda v[ulke, (t-1)] + e[ulke, t] Estimated results: Var sd = sqrt(Var) InTG 1.955622 1.398436 el .0370656 . 19252429 u .2893224 .53788695 Tests: Random Effects, Two Sided: LM(Var(u)=0) = 1404.12 Pr>chi2(1) = 0.0000 ALM(Var(u)=0) = 1086.25 Pr>chi2(1) = 0.0000 Random Effects, One Sided: LM(Var(u)0) 37.47 Pr>N(0,1) = 0.0000 ALM(Var(u)=0) 32.96 Pr>N(0,1) = 0.0000 Serial Correlation: LM(lambda=0) 332.70 Pr>chi2(1) = 0.0000 ALM(lambda=0) 14.83 Pr>chi2(1) = 0.0001 Joint Test: LM(Var (u)=0, lambda=0) = 1418.96 Pr>chi2(2) = 0.0000 kt 6 1. quietly Xtreg InTG InGT Inys InTH ININ, fe estimates store fe quietly xtreg InTG InGT Inys InTH ININ, re estimates store re hausman fe re ---- Coefficients - (b) (B) fe (b-B) Difference sqrt(diag(V_b-V_B)) S.E. re .6480705 .4830361 InGT Inys . 1650344 .0110591 .2263757 .3428412 .2153166 .3678046 .0450977 .0356809 0108909 -.0249633 InTH InIN .0173414 .0239369 -.0065955 0031534 Test: b = consistent under Ho and Ha; obtained from streg B = inconsistent under Ha, efficient under Ho; obtained from Xtreg Ho: difference in coefficients not systematic chi2(4) = (b-B) '[(V_b-V_B)^(-1)](b-B) 15.32 Prob>chi2 m 0.0041 (V_b-V_B is not positive definite) ikti 7 rhausman fe re, cluster bootstrap in progress ----+--- 1 ------2-----3------4-----5 50 100 Cluster-Robust Hausman Test (based on 100 bootstrap repetitions) b1: obtained from xtreg InTG InGT Inys InTH ININ,fe b2: obtained from xtreg InTG InGT Inys InTH ININ,re Test: Ho: difference in coefficients not systematic chi2(4) = (b1-2)' * [V_bootstrapped (b1-2)]^(-1) + (b1-b2) 2.24 Prob>chi2 = 0.6910 Cakti 8 quietly reg InTG InGT Inys InTH ININ predict resid, res sktest resid Skewness/Kurtosis tests for Normality - joint Variable obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 resid 325 0.0000 0.0029 27.00 0.0000 kt 9 quietly reg InTG InGT InYS INTH ININ estat hettest Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of Into chi (1) 16.64 Prob > chi2 = 0.0000 = akt 10 . xtserial InTG InGT Inys InTH ININ Wooldridge test for autocorrelation in panel data HO: no first-order autocorrelation F(1 52.863 24) Prob > F= 0.0000 kt 11 reset InTG InGT Inys In TH ININ Sadece testlerin sonular verilmitir. *** REgression Specification Error Tests (RESET) Ho: Model is specified - Ha: Model is Misspecified ---------------------- = Ramsey Specification ResetF Test - Ramsey RESETF1 Test: Y= X Yh2 - Ramsey RESETF2 Test: Y= X Yh2 Yh3 -Ramsey RESETF3 Test: Y X Yh2 Yh3 Yh4 = = 2.153 p-value > F(1 319) 0.1433 7.170 P-value > F(2318) 0.0009 21.921 P-value > F(3, 317) 0.0000 > . - = * DeBenedictis-Giles Specification ResetL Test Debenedictis-Giles Resetl1 Test 9.305 P-value > F(2.318) 0.0001 - Debenedictis-Giles ResetL2 Test = 18.761 P-value > F(4, 316) 0.0000 Debenedictis-Giles ResetL3 Test = 18.489 P-value > F(6. 314) 0.0000 * DeBenedictis-Giles Specification Resets Test - Debenedictis-Giles Resets1 Test - 17.867 p-Value > F(2. 318) 0.0000 - Debenedictis-Giles Resets2 Test - 13.621 P-value > F(4, 316) 0.0000 - Debenedictis-iles Reset S3 Test = 11.301 P-value > F(6, 314) 0.0000 --- - White Functional Form Test: E2= X X2 = 134.925 p-value > Chi2(1) 0.0000 akta 12 quietly Xtreg InTG InGT Inys InTH ININ, fe - predict res, res sktest res Skewness/Kurtosis tests for Normality - joint Variable Obs Pr(Skewness) Pr(Kurtosis) adj ch12(2) Prabcht2 res 325 0.0234 0.0062 11.24 0.0036 akt 13 - quietly Xtreg InTG InGT Inys InTH ININ, fe Xttest , Modified Wald test for groupwise heteroskedasticity in fixed effect regression model HO: signa (1)^2 = signa2 for all 1 chi2 (25) 6084.65 Prob>chi2 0.0000 kt 14 quietly Xtreg InTG InGT Inys IntH ININ, fe xtesd, pesaran Pesaran's test of cross sectional Independence = 12.733, Pr = 0.0000 Sakti 15 + Xtregar InTG InGT Inys In TH ININ, fe ibi Sadece testlerin sonular verilmitir. modified Bhargava et al. Durbin-Watson = 5432837 Baltagi-Wu LBI=.85588663 kt 16 resetxt InTG InGT Inys InTH ININ, id(ulke) it(t) model(xtfe) Sadece testlerin sonular verilmitir. *** REgression Specification Error Tests (RESET) Model= (xtfe) Ho: Model is specified - Ha: Model is Misspecified * Ramsey Specification ResetF Test Ramsey RESETF1 Test: Y= X Yh2 = 301.058 P-Value > F(1, 319) 0.0000 Ramsey RESETF2 Test: Y= X Yh2 Yh3 = 151.513 P-value > F(2, 318) 0.0000 Ramsey RESETF3 Test: Y= X Yh2 Yh3 Yh4 = 127.900 P-Value > F(3, 317) 0.0000 * DeBenedictis-Giles Specification Resetl Test Debenedictis-Giles ResetL1 Test 2.250 P-Value > F(2, 318) 0.1071 Debenedictis-Giles ResetL2 Test 26.337 P-Value > F(4, 316) 0.0000 Debenedictis-Giles ResetL3 Test 28.944 P-value > F06, 314) 0.0000 + DeBenedictis-Giles Specification Resets Test Debenedictis-Giles Resets1 Test 13.742 P-Value > F(2, 318) 0.0000 Debenedictis-Giles Resets2 Test 8.202 P-Value > F04, 316) 0.0000 Debenedictis-Giles Resets3 Test 5.801 P-Value > F06, 314) 0.0000 - White Functional Form Test: E2= X X2 = 140.191 P-Value > Chi2(1) 0.0000 ikti . xtsktest InTG InGT Inys InTH ININ (running _xtsktest_calculations on estimation sample) Bootstrap replications (50) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 50 Tests for skewness and kurtosis Number of obs 325 Replications 50 (Replications based on 25 clusters in ulke) Observed Coef. Bootstrap Std. Err. Normal-based [95% Conf. Interval] Z P> 121 .0031476 .008806 0.721 -.0141119 .0204071 .0093893 0.196 -.0062537 Skewness_e Kurtosis_e Skewness_u! Kurtosis u .012149 -. 1231217 .0853858 0.36 1.29 -1.72 1.12 .0716285 .0759944 0.086 0.261 - 2635109 -.0635605 0305518 .0172675 .234332 Prob > chi2 = 0.4062 Joint test for Normality on e: Joint test for Normality on u: chi2(2) = chi2(2) = 1.80 4.22 Prob > chi2 = 0.1214 kt 18 quietly streg InTG InGT Inys InTH ININ, re . xtcsd, pesaran Pesaran's test of cross sectional independence = 12.641, Pr = 0.0000 kt 19 quietly Xtreg InTG InGT Inys InTH ININ, re predict eps, e robvar eps, by(id) Sadece test sonular verilmitir. WO = 4.4480414 df(24, 300) Pr>F = 0.00000000 W50 = 2.7545285 df (24, 300) Pr > F = 0.00003447 W10 = 3.8901374 df(24, 300) Pr > F = 0.00000001 kt 20 Xtregar InTG InGT InYS INTH ININ, re lbi Sadece test sonular verilmitir. modified Bhargava et al. Durbin-Watson = .5432837 Baltagi-Wu LBI = .85588663 kt 21 resetxt InTG InGT Inys InTH ININ, id(ulke) it(t) model(xtre) Sadece test sonular verilmitir. *** REgression Specification Error Tests (RESET) - Model= (xtre) Ho: Model is specified Ha: Model is Misspecified * Ramsey Specification ResetF Test Ramsey RESETF1 Test: Y= X Yh2 = 113.630 P-Value > F(1, 319) 0.0000 Ramsey RESETF2 Test: Y X Yh2 Yh3 = 59.661 P-value > F(2, 318) 0.0000 Ramsey RESETF3 Test: Y= X Yh2 Yh3 Yh4 = 59.373 P-Value > F(3, 317) 0.0000 * DeBenedictis-Giles Specification Resett Test Debenedictis-Giles ResetL1 Test 4.682 p-Value > F(2, 318) 0.0099 Debenedictis-Giles ResetL2 Test 22.170 P-Value > F(4, 316) 0.0000 Debenedictis-Giles ResetL3 Test 29.868 P-Value > F(6, 314) 0.0000 *DeBenedictis-Giles Specification Resets Test Debenedictis-Giles Resets1 Test 16.156 P-value > F(2, 318) 0.0000 Debenedictis-Giles Resets2 Test 10.597 P-Value > F04, 316) 0.0000 Debenedictis-Giles ResetS3 Test 7.271 P-Value > F(6, 314) 0.0000 - White Functional Form Test: E2= X X2 = 136.094 P-Value > Chi2(1) 0.0000 kt 22 reg InTG InGT InYS INTH ININ, robust Linear regression Number of obs F(4, 320) Prob > F R-squared Root MSE 325 533.99 0.0000 0.8536 .53849 Robust Std. Err. InTG Coef. t P>It! [95% Conf. Interval] 5.00 0.000 . 1745703 .4134838 .3979775 InGT InYS InTH InIN .0349171 . 0600083 .0529377 6.89 0.000 . 1058742 .2954231 .2938275 - .0450426 .2432664 .5315445 .5021274 .0604237 7.52 0.000 .0076905 .0268034 0.29 0.774 _cons 1.281794 3047585 4.21 0.000 .6822104 1.881377 kt 23 reg InTG InGT Inys InTH ININ, cluster(id) Linear regression Number of obs 325 F(4, 24) 51.13 Prob > F 0.0000 R-squared 0.8536 Root MSE .53849 (Std. Err. adjusted for 25 clusters in id) Robust Std. Err. InTG Coef. t p>It! [95% Conf. Interval] InGT . 1745703 . 1087553 0.122 .3990303 1.61 2.03 .2036746 0.054 .8338476 Inys INTH InIN .4134838 .3979775 . 1659601 2.40 0.025 - ..0498896 -. 0068799 .0554528 -.0708575 -.8822774 .7405022 .0076905 .0380581 0.20 0.842 .0862386 _cons 1.281794 1.048536 1.22 0.233 3.445865 ikti 24 Xtreg InTG InGT Inys InTH ININ, fe robust Fixed-effects (within) regression Number of obs 325 Group variable: ulke Number of groups 25 R-sq: Obs per group: within = 0.6852 min = 13 between = 0.7830 avg = 13.0 overall = 0.7758 max 13 F(4,24) 58.28 corr(u_i, Xb) = -0.4726 Prob > F 0.0000 (Std. Err. adjusted for 25 clusters in ulke) Robust Std. Err. InTG Coef. t p>It! (95% Cont. Interval] 2.97 . 1981333 1.098008 .2180036 .0964076 2.35 .0274002 .4253512 INGT 1nYS1 InTH1 InIN _cons | .6480705 .2263757 .3428412 .0173414 . 1612764 2.13 0.007 0.027 0.044 0.275 0.242 .009983 .6756994 .0155318 1.12 -.0147146 .0493975 -1.762927 1.470174 -1.20 -4.797218 1.271363 .73555192 sigma_u sigma_e 1 rho . 19252429 .935884 (fraction of variance due to u_1) kt 25 325 . xtscc InTG InGT Inys InTH ININ, fe Regression with Driscoll-Kraay standard errors Method: Fixed-effects regression Group variable (i): ulke maximum lag: 2 25 Number of obs Number of groups FC 4, 12) Prob > F within R-squared 221.41 0.0000 0.6852 Drisc/Kraay Std. Err. InTG Coef. t P>It! [95% Conf. Interval] .6480705 088553 0.000 .4551301 .8410109 0.081 .4855101 InGT InYS InTH1 InIN .2263757 .3428412 .0173414 . 1189337 .0729155 7.32 1.90 4.70 1.46 0.001 .5017105 -.0327587 . 183972 -.0085051 -3.193021 .0118627 0.169 .043188 _cons -1.762927 .6563638 -2.69 0.020 -.3328335 kt 26 Xtreg InTG InGT Inys InTH ININ, re robust Random-effects GLS regression Number of obs 325 Group variable: ulke Number of groups 25 R-sq: Obs per group: within = 0.6803 min = 13 between = 0.8193 avg = 13.0 overall = 0.8111 max = 13 Wald chi2(4) 348.22 corr(u_i, X) = 0 (assumed) Prob > chi2 0.0000 (Std. Err. adjusted for 25 clusters in ulke) Robust Std. Err. InTG Coef. z P> 121 [95% Conf. Interval] .4830361 . 1506611 3.21 0.001 . 1877458 .7783264 .0988311 2.18 .0216112 InGT 1nYS1 InTH InIN 0.029 0.014 .4090221 .6616248 . 1499111 2.45 .2153166 .3678046 .0239369 -. 4055832 .0138133 1.73 0.083 .0739843 -.0031368 -2.239288 .0510106 _cons .9355806 -0.43 0.665 1.428121 sigma_u sigma_e 53788695 . 19252429 88643698 rho (fraction of variance due to u_i) 325 kt 27 xtscc InTG InGT Inys InTH ININ, re Regression with Driscoll-Kraay standard errors Method: Random-effects GLS regression Group variable (i): ulke maximum lag: 2 corr(u_i, Xb) = 0 (assumed) Number of obs Number of groups Wald chi2(4) Prob > chi2 overall R-squared = 25 726.01 0.0000 0.8111 Drisc/Kraay Std. Err. InTG Coef. t p>It! [95% Conf. Interval] .4830361 .0773146 6.25 0.000 .65149 .3145821 - .0455123 .2153166 .1197115 1.80 .4761455 InGT lnys InTH1 InIN 0.097 0.000 .3678046 .0691299 5.35 .2179044 .5177047 .0239369 .0102712 2.33 0.038 .0015579 .0463159 _cons -.4055832 .6523912 -0.62 0.546 -1.827022 1.015855 sigma_u sigma_e rho .53788695 . 19252429 88643698 (fraction of variance due to u_i) kt 1 reg InTG InGT InYS INTH ININ Source SS df MS 325 = 466.27 0.0000 540.829307 135.207327 Model Residual Number of obs F(4, 320) Prob > F R-squared Adj R-squared Root MSE 92.7923767 320 .289976177 0.8536 Total 0.8517 .53849 633.621683 324 1.95562248 InTG Coef. Std. Err. t P>It [95% Conf. Interval] . 1745703 .4134838 .0315148 .046616 0355569 0.000 0.000 . 112568 .3217714 InGT InYS1 InTH InIN .2365726 .5051963 5.54 8.87 11.19 0.39 .3979775 0.000 .3280227 .4679323 .0076905 .0197941 0.698 -.0312525 0466336 _cons 1.281794 2352698 5.45 0.000 .8189227 1.744665 akt 2 quietly reg InTG InGT Inys InTH ININ estat vif Variable ! VIF 1/VIF InYS InTH1 InGT InIN 4.17 3.61 2.30 0.240065 0.277209 0.435503 0.496549 2.01 Mean VIF 1 3.02 325 25 kt 3 Xtreg InTG InGT Ines InTH ININ, fe Fixed-effects (within) regression Group variable: ulke R-sq: within = 0.6852 between = 0.7830 overall = 0.7758 Number of obs Number of groups obs per group min - avg = 13 13.0 max = 13 F(4,296) Prob > F 161.10 0.0000 corr(u_i, Xb) = -0.4726 InTG Coef. Std. Err. t p>It! [95% Conf. Interval] 0745109 8.70 .5014322 .7947088 .6480705 .2263757 0742988 3.05 InGT Inys InTH1 InIN 0.000 0.003 0.000 .3725966 .3428412 0385588 8.89 .4187253 .0801548 .2669572 -.0008525 -3.10603 1.88 0.062 .0355354 .0173414 -1.762927 .0092448 .6824673 cons -2.58 0.010 -.4198244 .73555192 sigma_u! sigma_e 1 rho . 19252429 .935884 (fraction of variance due to ui) F test that all u_i=0: F(24, 296) = 91.98 Prob > F = 0.0000 325 25 ikti 4 Xtreg InTG InGT InYS InTH ININ, re Random-effects GLS regression Group variable: ulke R-sq: within = 0.6803 between = 0.8193 overall = 0.8111 Number of obs Number of groups Obs per group: min - 13 avg - 13.0 13 max a Wald chi2(4) Prob > chi2 741.27 0.0000 corr(wi, X) = 0 (assumed) InTG Coef. Std. Err. 2 P> 121 [95% Conf. Interval] .4830361 8.14 .366784 InGT InYS .0593134 .0651705 .0369887 .2153166 .3678046 .0239369 0.000 0.001 0.000 0.006 3.30 9.94 2.75 .0875849 .295308 InTH1 .5992882 .3430484 .4403011 .0409698 InIN .0086904 .006904 cons -.4055832 .506827 -0.80 0.424 -1.398946 .5877794 sigma_u sigma_e1 rho 1 .53788695 . 19252429 .88643698 (fraction of variance due to u_1) kt 5 quietly xtreg InTG InGT Inys InTH ININ, re xttest1, unadjusted Tests for the error component model: InTG[ulke, t] = xb + uulke] + v[ulke, t] V[ulke,t] = lambda v[ulke, (t-1)] + e[ulke, t] Estimated results: Var sd = sqrt(Var) InTG 1.955622 1.398436 el .0370656 . 19252429 u .2893224 .53788695 Tests: Random Effects, Two Sided: LM(Var(u)=0) = 1404.12 Pr>chi2(1) = 0.0000 ALM(Var(u)=0) = 1086.25 Pr>chi2(1) = 0.0000 Random Effects, One Sided: LM(Var(u)0) 37.47 Pr>N(0,1) = 0.0000 ALM(Var(u)=0) 32.96 Pr>N(0,1) = 0.0000 Serial Correlation: LM(lambda=0) 332.70 Pr>chi2(1) = 0.0000 ALM(lambda=0) 14.83 Pr>chi2(1) = 0.0001 Joint Test: LM(Var (u)=0, lambda=0) = 1418.96 Pr>chi2(2) = 0.0000 kt 6 1. quietly Xtreg InTG InGT Inys InTH ININ, fe estimates store fe quietly xtreg InTG InGT Inys InTH ININ, re estimates store re hausman fe re ---- Coefficients - (b) (B) fe (b-B) Difference sqrt(diag(V_b-V_B)) S.E. re .6480705 .4830361 InGT Inys . 1650344 .0110591 .2263757 .3428412 .2153166 .3678046 .0450977 .0356809 0108909 -.0249633 InTH InIN .0173414 .0239369 -.0065955 0031534 Test: b = consistent under Ho and Ha; obtained from streg B = inconsistent under Ha, efficient under Ho; obtained from Xtreg Ho: difference in coefficients not systematic chi2(4) = (b-B) '[(V_b-V_B)^(-1)](b-B) 15.32 Prob>chi2 m 0.0041 (V_b-V_B is not positive definite) ikti 7 rhausman fe re, cluster bootstrap in progress ----+--- 1 ------2-----3------4-----5 50 100 Cluster-Robust Hausman Test (based on 100 bootstrap repetitions) b1: obtained from xtreg InTG InGT Inys InTH ININ,fe b2: obtained from xtreg InTG InGT Inys InTH ININ,re Test: Ho: difference in coefficients not systematic chi2(4) = (b1-2)' * [V_bootstrapped (b1-2)]^(-1) + (b1-b2) 2.24 Prob>chi2 = 0.6910 Cakti 8 quietly reg InTG InGT Inys InTH ININ predict resid, res sktest resid Skewness/Kurtosis tests for Normality - joint Variable obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 resid 325 0.0000 0.0029 27.00 0.0000 kt 9 quietly reg InTG InGT InYS INTH ININ estat hettest Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of Into chi (1) 16.64 Prob > chi2 = 0.0000 = akt 10 . xtserial InTG InGT Inys InTH ININ Wooldridge test for autocorrelation in panel data HO: no first-order autocorrelation F(1 52.863 24) Prob > F= 0.0000 kt 11 reset InTG InGT Inys In TH ININ Sadece testlerin sonular verilmitir. *** REgression Specification Error Tests (RESET) Ho: Model is specified - Ha: Model is Misspecified ---------------------- = Ramsey Specification ResetF Test - Ramsey RESETF1 Test: Y= X Yh2 - Ramsey RESETF2 Test: Y= X Yh2 Yh3 -Ramsey RESETF3 Test: Y X Yh2 Yh3 Yh4 = = 2.153 p-value > F(1 319) 0.1433 7.170 P-value > F(2318) 0.0009 21.921 P-value > F(3, 317) 0.0000 > . - = * DeBenedictis-Giles Specification ResetL Test Debenedictis-Giles Resetl1 Test 9.305 P-value > F(2.318) 0.0001 - Debenedictis-Giles ResetL2 Test = 18.761 P-value > F(4, 316) 0.0000 Debenedictis-Giles ResetL3 Test = 18.489 P-value > F(6. 314) 0.0000 * DeBenedictis-Giles Specification Resets Test - Debenedictis-Giles Resets1 Test - 17.867 p-Value > F(2. 318) 0.0000 - Debenedictis-Giles Resets2 Test - 13.621 P-value > F(4, 316) 0.0000 - Debenedictis-iles Reset S3 Test = 11.301 P-value > F(6, 314) 0.0000 --- - White Functional Form Test: E2= X X2 = 134.925 p-value > Chi2(1) 0.0000 akta 12 quietly Xtreg InTG InGT Inys InTH ININ, fe - predict res, res sktest res Skewness/Kurtosis tests for Normality - joint Variable Obs Pr(Skewness) Pr(Kurtosis) adj ch12(2) Prabcht2 res 325 0.0234 0.0062 11.24 0.0036 akt 13 - quietly Xtreg InTG InGT Inys InTH ININ, fe Xttest , Modified Wald test for groupwise heteroskedasticity in fixed effect regression model HO: signa (1)^2 = signa2 for all 1 chi2 (25) 6084.65 Prob>chi2 0.0000 kt 14 quietly Xtreg InTG InGT Inys IntH ININ, fe xtesd, pesaran Pesaran's test of cross sectional Independence = 12.733, Pr = 0.0000 Sakti 15 + Xtregar InTG InGT Inys In TH ININ, fe ibi Sadece testlerin sonular verilmitir. modified Bhargava et al. Durbin-Watson = 5432837 Baltagi-Wu LBI=.85588663 kt 16 resetxt InTG InGT Inys InTH ININ, id(ulke) it(t) model(xtfe) Sadece testlerin sonular verilmitir. *** REgression Specification Error Tests (RESET) Model= (xtfe) Ho: Model is specified - Ha: Model is Misspecified * Ramsey Specification ResetF Test Ramsey RESETF1 Test: Y= X Yh2 = 301.058 P-Value > F(1, 319) 0.0000 Ramsey RESETF2 Test: Y= X Yh2 Yh3 = 151.513 P-value > F(2, 318) 0.0000 Ramsey RESETF3 Test: Y= X Yh2 Yh3 Yh4 = 127.900 P-Value > F(3, 317) 0.0000 * DeBenedictis-Giles Specification Resetl Test Debenedictis-Giles ResetL1 Test 2.250 P-Value > F(2, 318) 0.1071 Debenedictis-Giles ResetL2 Test 26.337 P-Value > F(4, 316) 0.0000 Debenedictis-Giles ResetL3 Test 28.944 P-value > F06, 314) 0.0000 + DeBenedictis-Giles Specification Resets Test Debenedictis-Giles Resets1 Test 13.742 P-Value > F(2, 318) 0.0000 Debenedictis-Giles Resets2 Test 8.202 P-Value > F04, 316) 0.0000 Debenedictis-Giles Resets3 Test 5.801 P-Value > F06, 314) 0.0000 - White Functional Form Test: E2= X X2 = 140.191 P-Value > Chi2(1) 0.0000 ikti . xtsktest InTG InGT Inys InTH ININ (running _xtsktest_calculations on estimation sample) Bootstrap replications (50) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 50 Tests for skewness and kurtosis Number of obs 325 Replications 50 (Replications based on 25 clusters in ulke) Observed Coef. Bootstrap Std. Err. Normal-based [95% Conf. Interval] Z P> 121 .0031476 .008806 0.721 -.0141119 .0204071 .0093893 0.196 -.0062537 Skewness_e Kurtosis_e Skewness_u! Kurtosis u .012149 -. 1231217 .0853858 0.36 1.29 -1.72 1.12 .0716285 .0759944 0.086 0.261 - 2635109 -.0635605 0305518 .0172675 .234332 Prob > chi2 = 0.4062 Joint test for Normality on e: Joint test for Normality on u: chi2(2) = chi2(2) = 1.80 4.22 Prob > chi2 = 0.1214 kt 18 quietly streg InTG InGT Inys InTH ININ, re . xtcsd, pesaran Pesaran's test of cross sectional independence = 12.641, Pr = 0.0000 kt 19 quietly Xtreg InTG InGT Inys InTH ININ, re predict eps, e robvar eps, by(id) Sadece test sonular verilmitir. WO = 4.4480414 df(24, 300) Pr>F = 0.00000000 W50 = 2.7545285 df (24, 300) Pr > F = 0.00003447 W10 = 3.8901374 df(24, 300) Pr > F = 0.00000001 kt 20 Xtregar InTG InGT InYS INTH ININ, re lbi Sadece test sonular verilmitir. modified Bhargava et al. Durbin-Watson = .5432837 Baltagi-Wu LBI = .85588663 kt 21 resetxt InTG InGT Inys InTH ININ, id(ulke) it(t) model(xtre) Sadece test sonular verilmitir. *** REgression Specification Error Tests (RESET) - Model= (xtre) Ho: Model is specified Ha: Model is Misspecified * Ramsey Specification ResetF Test Ramsey RESETF1 Test: Y= X Yh2 = 113.630 P-Value > F(1, 319) 0.0000 Ramsey RESETF2 Test: Y X Yh2 Yh3 = 59.661 P-value > F(2, 318) 0.0000 Ramsey RESETF3 Test: Y= X Yh2 Yh3 Yh4 = 59.373 P-Value > F(3, 317) 0.0000 * DeBenedictis-Giles Specification Resett Test Debenedictis-Giles ResetL1 Test 4.682 p-Value > F(2, 318) 0.0099 Debenedictis-Giles ResetL2 Test 22.170 P-Value > F(4, 316) 0.0000 Debenedictis-Giles ResetL3 Test 29.868 P-Value > F(6, 314) 0.0000 *DeBenedictis-Giles Specification Resets Test Debenedictis-Giles Resets1 Test 16.156 P-value > F(2, 318) 0.0000 Debenedictis-Giles Resets2 Test 10.597 P-Value > F04, 316) 0.0000 Debenedictis-Giles ResetS3 Test 7.271 P-Value > F(6, 314) 0.0000 - White Functional Form Test: E2= X X2 = 136.094 P-Value > Chi2(1) 0.0000 kt 22 reg InTG InGT InYS INTH ININ, robust Linear regression Number of obs F(4, 320) Prob > F R-squared Root MSE 325 533.99 0.0000 0.8536 .53849 Robust Std. Err. InTG Coef. t P>It! [95% Conf. Interval] 5.00 0.000 . 1745703 .4134838 .3979775 InGT InYS InTH InIN .0349171 . 0600083 .0529377 6.89 0.000 . 1058742 .2954231 .2938275 - .0450426 .2432664 .5315445 .5021274 .0604237 7.52 0.000 .0076905 .0268034 0.29 0.774 _cons 1.281794 3047585 4.21 0.000 .6822104 1.881377 kt 23 reg InTG InGT Inys InTH ININ, cluster(id) Linear regression Number of obs 325 F(4, 24) 51.13 Prob > F 0.0000 R-squared 0.8536 Root MSE .53849 (Std. Err. adjusted for 25 clusters in id) Robust Std. Err. InTG Coef. t p>It! [95% Conf. Interval] InGT . 1745703 . 1087553 0.122 .3990303 1.61 2.03 .2036746 0.054 .8338476 Inys INTH InIN .4134838 .3979775 . 1659601 2.40 0.025 - ..0498896 -. 0068799 .0554528 -.0708575 -.8822774 .7405022 .0076905 .0380581 0.20 0.842 .0862386 _cons 1.281794 1.048536 1.22 0.233 3.445865 ikti 24 Xtreg InTG InGT Inys InTH ININ, fe robust Fixed-effects (within) regression Number of obs 325 Group variable: ulke Number of groups 25 R-sq: Obs per group: within = 0.6852 min = 13 between = 0.7830 avg = 13.0 overall = 0.7758 max 13 F(4,24) 58.28 corr(u_i, Xb) = -0.4726 Prob > F 0.0000 (Std. Err. adjusted for 25 clusters in ulke) Robust Std. Err. InTG Coef. t p>It! (95% Cont. Interval] 2.97 . 1981333 1.098008 .2180036 .0964076 2.35 .0274002 .4253512 INGT 1nYS1 InTH1 InIN _cons | .6480705 .2263757 .3428412 .0173414 . 1612764 2.13 0.007 0.027 0.044 0.275 0.242 .009983 .6756994 .0155318 1.12 -.0147146 .0493975 -1.762927 1.470174 -1.20 -4.797218 1.271363 .73555192 sigma_u sigma_e 1 rho . 19252429 .935884 (fraction of variance due to u_1) kt 25 325 . xtscc InTG InGT Inys InTH ININ, fe Regression with Driscoll-Kraay standard errors Method: Fixed-effects regression Group variable (i): ulke maximum lag: 2 25 Number of obs Number of groups FC 4, 12) Prob > F within R-squared 221.41 0.0000 0.6852 Drisc/Kraay Std. Err. InTG Coef. t P>It! [95% Conf. Interval] .6480705 088553 0.000 .4551301 .8410109 0.081 .4855101 InGT InYS InTH1 InIN .2263757 .3428412 .0173414 . 1189337 .0729155 7.32 1.90 4.70 1.46 0.001 .5017105 -.0327587 . 183972 -.0085051 -3.193021 .0118627 0.169 .043188 _cons -1.762927 .6563638 -2.69 0.020 -.3328335 kt 26 Xtreg InTG InGT Inys InTH ININ, re robust Random-effects GLS regression Number of obs 325 Group variable: ulke Number of groups 25 R-sq: Obs per group: within = 0.6803 min = 13 between = 0.8193 avg = 13.0 overall = 0.8111 max = 13 Wald chi2(4) 348.22 corr(u_i, X) = 0 (assumed) Prob > chi2 0.0000 (Std. Err. adjusted for 25 clusters in ulke) Robust Std. Err. InTG Coef. z P> 121 [95% Conf. Interval] .4830361 . 1506611 3.21 0.001 . 1877458 .7783264 .0988311 2.18 .0216112 InGT 1nYS1 InTH InIN 0.029 0.014 .4090221 .6616248 . 1499111 2.45 .2153166 .3678046 .0239369 -. 4055832 .0138133 1.73 0.083 .0739843 -.0031368 -2.239288 .0510106 _cons .9355806 -0.43 0.665 1.428121 sigma_u sigma_e 53788695 . 19252429 88643698 rho (fraction of variance due to u_i) 325 kt 27 xtscc InTG InGT Inys InTH ININ, re Regression with Driscoll-Kraay standard errors Method: Random-effects GLS regression Group variable (i): ulke maximum lag: 2 corr(u_i, Xb) = 0 (assumed) Number of obs Number of groups Wald chi2(4) Prob > chi2 overall R-squared = 25 726.01 0.0000 0.8111 Drisc/Kraay Std. Err. InTG Coef. t p>It! [95% Conf. Interval] .4830361 .0773146 6.25 0.000 .65149 .3145821 - .0455123 .2153166 .1197115 1.80 .4761455 InGT lnys InTH1 InIN 0.097 0.000 .3678046 .0691299 5.35 .2179044 .5177047 .0239369 .0102712 2.33 0.038 .0015579 .0463159 _cons -.4055832 .6523912 -0.62 0.546 -1.827022 1.015855 sigma_u sigma_e rho .53788695 . 19252429 88643698 (fraction of variance due to u_i)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Management Accounting For Beginners

Authors: Nicholas Apostolides

1st Edition

0815351224, 978-0815351221

More Books

Students also viewed these Accounting questions

Question

What are the attributes of a technical decision?

Answered: 1 week ago