Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Differentiate: #6. y=(2x-1)^3(x+7)^-3 A) dy/dx=45(2x-1)^3(x+7)^-2 B) dy/dx=45(2x-1)^2(x+7)^-3 C) dy/dx=45(2x-1)^2(x+7)^-4 D) dy/dx=45(2x-1)^3(x+7)^-4 #7. h(z)=fourthroot(3z+9/-7z+8) A) h'(z)=1/4[87/(-7+8)^2]^-3/4 B) h'(z)=1/4(3z+9/-7z+8)^-3/4 C) h'(z)=1/4(3z+9/-7z+8)^-3/4 D) h'(z)=-3/28(3z+9/-7z+8)^-3/4 #8. f(x)=(4x+2/x-4)^3 A) f'(x)=(4x+2/x-4)^2*18/(x-4)^2

Differentiate:
#6. y=(2x-1)^3(x+7)^-3
A) dy/dx=45(2x-1)^3(x+7)^-2
B) dy/dx=45(2x-1)^2(x+7)^-3
C) dy/dx=45(2x-1)^2(x+7)^-4
D) dy/dx=45(2x-1)^3(x+7)^-4

#7. h(z)=fourthroot(3z+9/-7z+8)
A) h'(z)=1/4[87/(-7+8)^2]^-3/4
B) h'(z)=1/4(3z+9/-7z+8)^-3/4
C) h'(z)=1/4(3z+9/-7z+8)^-3/4
D) h'(z)=-3/28(3z+9/-7z+8)^-3/4


#8. f(x)=(4x+2/x-4)^3
A) f'(x)=(4x+2/x-4)^2*18/(x-4)^2
B) f'(x)=(4x+2/x-4)^2
C) f'(x)=(4x+2/x-4)^2
D) f'(x)=[-54/(x-4)^2]^2



Find the equation of the line tangent to the graph of the function at the indicated point.
#9. y=(x^3-3x)^4/(2x-5)^2 at the point (2,16)
A) y=-224(x-2)+16
B) y=352(x-2)+16
C) y=224(x-2)+16
D) f'(x)=[-54/(x-4)^2]^2

Step by Step Solution

3.45 Rating (158 Votes )

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Financial Accounting and Reporting

Authors: Barry Elliott, Jamie Elliott

14th Edition

978-0273744535, 273744445, 273744534, 978-0273744443

More Books

Students also viewed these Mathematics questions