Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Problem 7.14 Euro/Japanese Yen. A French firm is expection to recieve JPY10.4 million in 90 days as a result of an export sale to Japanese
Problem 7.14 Euro/Japanese Yen. A French firm is expection to recieve JPY10.4 million in 90 days as a result of an export sale to Japanese semiconductor firm. What will it cost, in total to purchase an options to sell the YEN at EURO 0.0072/JPY?
| |||||||||||||||
Pricing Currency Options on the Euro/Yen Crossrate | |||||||||||||||
A Japanese firm wishing to buy | A European firm wishing to buy | ||||||||||||||
or sell euros (the foreign currency) | or sell yen (the foreign currency) | ||||||||||||||
Variable | Value | Variable | Value | ||||||||||||
Spot rate (domestic/foreign) | S0 | JPY 133.89 | S0 | 0.01 | |||||||||||
Strike rate (domestic/foreign) | X | JPY 136.00 | X | 0.01 | |||||||||||
Domestic interest rate (% p.a.) | rd | 0.09% | rd | 2.19% | |||||||||||
Foreign interest rate (% p.a.) | rf | 2.19% | rf | 0.09% | |||||||||||
Time (years, 365 days) | T | 0.247 | T | 0.247 | |||||||||||
Days equivalent | 90 | 90 | |||||||||||||
Volatility (% p.a.) | s | 10.00% | s | 10.00% | |||||||||||
Call option premium (per unit fc) | c | JPY 1.50 | c | 0.00 | |||||||||||
Put option premium (per unit fc) | p | JPY 4.30 | p | 0.00 | |||||||||||
(European pricing) | |||||||||||||||
Call option premium (%) | c | 1.12% | c | 1.30% | |||||||||||
Put option premium (%) | p | 3.21% | p | 2.90% | |||||||||||
A European-based firm like Legrand (France) would need to purchase a put option on the Japanese yen. The company wishes a strike rate of 0.0072 euro for each yen sold (the strike rate) and a 90-day maturity. Note that the "Time" must be entered as the fraction of a 365 day year, in this case, 90/365 = 0.247. | |||||||||||||||
Put option premium (euro/JPY) | 0.00 | ||||||||||||||
Notional principal (JPY) | JPY 10,400,000 | ||||||||||||||
Total cost (euro) | 2,167.90 | ||||||||||||||
Problem 7.15 U.S. Dollar/British Pound | |||||||||||||||
Pricing Currency Options on the British pound | |||||||||||||||
A U.S.-based firm wishing to buy | A British firm wishing to buy | ||||||||||||||
or sell pounds (the foreign currency) | or sell dollars (the foreign currency) | ||||||||||||||
Variable | Value | Variable | Value | ||||||||||||
Spot rate (domestic/foreign) | S0 | $1.87 | S0 | 0.5355 | |||||||||||
Strike rate (domestic/foreign) | X | $1.80 | X | 0.5556 | |||||||||||
Domestic interest rate (% p.a.) | rd | 1.45% | rd | 4.53% | |||||||||||
Foreign interest rate (% p.a.) | rf | 4.53% | rf | 1.45% | |||||||||||
Time (years, 365 days) | T | 0.493 | T | 0.493 | |||||||||||
Days equivalent | 180 | 180 | |||||||||||||
Volatility (% p.a.) | s | 9.40% | s | 9.40% | |||||||||||
Call option premium (per unit fc) | c | $0.07 | c | 0.0091 | |||||||||||
Put option premium (per unit fc) | p | $0.03 | p | 0.0207 | |||||||||||
(European pricing) | |||||||||||||||
Call option premium (%) | c | 3.73% | c | 1.70% | |||||||||||
Put option premium (%) | p | 1.64% | p | 3.87% | |||||||||||
Call option premiums for a U.S.-based firm buying call options on the British pound: | |||||||||||||||
180-day maturity ($/pound) | $0.07 | ||||||||||||||
90-day maturity ($/pound) | $0.07 | ||||||||||||||
Difference ($/pound) | $0.00 | ||||||||||||||
The maturity doubled while the option premium rose only about 4%. | |||||||||||||||
Problem 7.16 Euro/British Pound | |||||||||||||||
Pricing Currency Options on the British pound/Euro Crossrate | |||||||||||||||
A European firm wishing to buy | A British firm wishing to buy | ||||||||||||||
or sell pounds (the foreign currency) | or sell euros (the foreign currency) | ||||||||||||||
Variable | Value | Variable | Value | ||||||||||||
Spot rate (domestic/foreign) | S0 | 1.47 | S0 | 0.6789 | |||||||||||
Strike rate (domestic/foreign) | X | 1.50 | X | 0.6667 | |||||||||||
Domestic interest rate (% p.a.) | rd | 4.00% | rd | 4.16% | |||||||||||
Foreign interest rate (% p.a.) | rf | 4.16% | rf | 4.00% | |||||||||||
Time (years, 365 days) | T | 0.247 | T | 0.247 | |||||||||||
Days equivalent | 90 | 90 | |||||||||||||
Volatility (% p.a.) | s | 11.40% | s | 11.40% | |||||||||||
Call option premium (per unit fc) | c | 0.02 | c | 0.0220 | |||||||||||
Put option premium (per unit fc) | p | 0.05 | p | 0.0097 | |||||||||||
(European pricing) | |||||||||||||||
Call option premium (%) | c | 1.45% | c | 3.24% | |||||||||||
Put option premium (%) | p | 3.30% | p | 1.42% | |||||||||||
When the euro's interest rate rises from 2.072% to 4.000%, the call option premium on British pounds rises: | |||||||||||||||
Call option on pounds when euro interest is 4.000% | 0.02 | ||||||||||||||
Call option on pounds when euro interest is 2.072% | 0.02 | ||||||||||||||
Change, an increase in the premium | 0.02 | ||||||||||||||
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started