Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Q2 By referring to Convolutional Neural Network (CNN) code in Figure Q2: (a) (b) Illustrate the model structure with details of layer labelling (3 marks)

image text in transcribedimage text in transcribed

Q2 By referring to Convolutional Neural Network (CNN) code in Figure Q2: (a) (b) Illustrate the model structure with details of layer labelling (3 marks) Analyze image output shape and its total trainable parameters for each stack of the CNN layer. (20 marks) Illustrate the new model structure if VGG pre-trained model is to be integrated to the existing CNN structure. (2 marks) (C) cnn_model = models.Sequential() cnn_model.add(layers.Conv2D(16,(11,11), activation='relu', input_shape=(256,256,3))) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(32, (7,7), activation='relu')) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(64,(1,1), activation='relu')) cnn_model.add(layers.Conv2D(128,(5,5), activation='relu')) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(256, (3, 3), activation='relu')) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(512,(3,3), activation='relu')) cnn_model.add(layers.Flatten()) cnn_model.add(layers.Dense(512, activation='relu')) cnn_model.add(layers.Dense(1, activation='sigmoid)) Figure Q2 Q2 By referring to Convolutional Neural Network (CNN) code in Figure Q2: (a) (b) Illustrate the model structure with details of layer labelling (3 marks) Analyze image output shape and its total trainable parameters for each stack of the CNN layer. (20 marks) Illustrate the new model structure if VGG pre-trained model is to be integrated to the existing CNN structure. (2 marks) (C) cnn_model = models.Sequential() cnn_model.add(layers.Conv2D(16,(11,11), activation='relu', input_shape=(256,256,3))) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(32, (7,7), activation='relu')) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(64,(1,1), activation='relu')) cnn_model.add(layers.Conv2D(128,(5,5), activation='relu')) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(256, (3, 3), activation='relu')) cnn_model.add(layers.MaxPooling2D((2, 2))) cnn_model.add(layers.Conv2D(512,(3,3), activation='relu')) cnn_model.add(layers.Flatten()) cnn_model.add(layers.Dense(512, activation='relu')) cnn_model.add(layers.Dense(1, activation='sigmoid)) Figure Q2

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Students also viewed these Databases questions

Question

Question What are the requirements for a SIMPLE 401(k) plan?

Answered: 1 week ago