Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Question 12 - (20 pts): For a PID control system, the characteristic equation can be derived based on individual transfer functions from various steps the

image text in transcribed

Question 12 - (20 pts): For a PID control system, the characteristic equation can be derived based on individual transfer functions from various steps the control loop. Often, this equation is written in terms of the individual transfer functions (i.e., Gp,Gc,Gv, etc.). Once you develop the characteristic equation you can assess the equations in terms of the controller parameters (i.e., Kc ). Consider the characteristic equation for a specific controller: F(s)=2Ds3+I20s2+3s+1+10Kc Adjusting the Process Gain, Kc, together with the derivative and integral time constants will allow you to adjust the controller to be more aggressive or more sluggish with or without oscillations. For example, when Kc=0,D=2.5 and I=2, eq. 1 reduces to: F(s)=5s3+10s2+3s+1 a) The roots of eq. (1) for different values of KC,D, and I can be used to determine where the system is stable or unstable. For Kc=0.5,D=2.5 and I=2, use the Rooth Array to determine if the system is stable (show all work)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Surfactant Formulation Engineering Using HLD And NAC

Authors: Edgar Acosta, Jeffrey Harwell, David A. Sabatini

1st Edition

0128214813, 978-0128214817

More Books

Students also viewed these Chemical Engineering questions