Question
SmartQuickSort: Implement the smart quick sort algorithm: Smart quick sort allows the use of a better splitting value (the pivot value) when to split the
SmartQuickSort: Implement the smart quick sort algorithm: Smart quick sort allows the use of a better splitting value (the pivot value) when to split the array into two. In this algorithm, we will use the average of the array (subarray) of all elements as the pivot. The code skeleton is already implemented in the ch10.Sorts.java file (line 304 to 390), and please read the comments of the two functions (split4SmartQuickSort, and smartQuickSort) before your implementation.
Here is the code for Sorts.java
//---------------------------------------------------------------------------- // Sorts.java by Dale/Joyce/Weems Chapter 10 // // Test harness used to run sorting algorithms. //----------------------------------------------------------------------------
import ch10.SmartQuickSortPivot;
import java.util.*; import java.text.DecimalFormat;
public class Sorts { static final int SIZE = 50; // size of array to be sorted static int[] values = new int[SIZE]; // values to be sorted
static void initValues() // Initializes the values array with random integers from 0 to 99. { Random rand = new Random(); for (int index = 0; index < SIZE; index++) values[index] = Math.abs(rand.nextInt()) % 100; }
static public boolean isSorted() // Returns true if the array values are sorted and false otherwise. { boolean sorted = true; for (int index = 0; index < (SIZE - 1); index++) if (values[index] > values[index + 1]) sorted = false; return sorted; }
static public void swap(int index1, int index2) // Precondition: index1 and index2 are >= 0 and < SIZE. // // Swaps the integers at locations index1 and index2 of the values array. { int temp = values[index1]; values[index1] = values[index2]; values[index2] = temp; }
static public void printValues() // Prints all the values integers. { int value; DecimalFormat fmt = new DecimalFormat("00"); System.out.println("The values array is:"); for (int index = 0; index < SIZE; index++) { value = values[index]; if (((index + 1) % 10) == 0) System.out.println(fmt.format(value)); else System.out.print(fmt.format(value) + " "); } System.out.println(); }
///////////////////////////////////////////////////////////////// // // Selection Sort
static int minIndex(int startIndex, int endIndex) // Returns the index of the smallest value in // values[startIndex]..values[endIndex]. { int indexOfMin = startIndex; for (int index = startIndex + 1; index <= endIndex; index++) if (values[index] < values[indexOfMin]) indexOfMin = index; return indexOfMin; }
static void selectionSort() // Sorts the values array using the selection sort algorithm. { int endIndex = SIZE - 1; for (int current = 0; current < endIndex; current++) swap(current, minIndex(current, endIndex)); }
///////////////////////////////////////////////////////////////// // // Bubble Sort
static void bubbleUp(int startIndex, int endIndex) // Switches adjacent pairs that are out of order // between values[startIndex]..values[endIndex] // beginning at values[endIndex]. { for (int index = endIndex; index > startIndex; index--) if (values[index] < values[index - 1]) swap(index, index - 1); } static void bubbleSort() // Sorts the values array using the bubble sort algorithm. { int current = 0; while (current < (SIZE - 1)) { bubbleUp(current, SIZE - 1); current++; } }
///////////////////////////////////////////////////////////////// // // Short Bubble Sort
static boolean bubbleUp2(int startIndex, int endIndex) // Switches adjacent pairs that are out of order // between values[startIndex]..values[endIndex] // beginning at values[endIndex]. // // Returns false if a swap was made; otherwise, returns true. { boolean sorted = true; for (int index = endIndex; index > startIndex; index--) if (values[index] < values[index - 1]) { swap(index, index - 1); sorted = false; } return sorted; } static void shortBubble() // Sorts the values array using the bubble sort algorithm. // The process stops as soon as values is sorted. { int current = 0; boolean sorted = false; while ((current < (SIZE - 1)) && !sorted) { sorted = bubbleUp2(current, SIZE - 1); current++; } }
///////////////////////////////////////////////////////////////// // // Insertion Sort
static void insertItem(int startIndex, int endIndex) // Upon completion, values[0]..values[endIndex] are sorted. { boolean finished = false; int current = endIndex; boolean moreToSearch = true; while (moreToSearch && !finished) { if (values[current] < values[current - 1]) { swap(current, current - 1); current--; moreToSearch = (current != startIndex); } else finished = true; } } static void insertionSort() // Sorts the values array using the insertion sort algorithm. { for (int count = 1; count < SIZE; count++) insertItem(0, count); }
///////////////////////////////////////////////////////////////// // // Merge Sort
static void merge (int leftFirst, int leftLast, int rightFirst, int rightLast) // Preconditions: values[leftFirst]..values[leftLast] are sorted. // values[rightFirst]..values[rightLast] are sorted. // // Sorts values[leftFirst]..values[rightLast] by merging the two subarrays. { int[] tempArray = new int [SIZE]; int index = leftFirst; int saveFirst = leftFirst; // to remember where to copy back while ((leftFirst <= leftLast) && (rightFirst <= rightLast)) { if (values[leftFirst] < values[rightFirst]) { tempArray[index] = values[leftFirst]; leftFirst++; } else { tempArray[index] = values[rightFirst]; rightFirst++; } index++; } while (leftFirst <= leftLast) // Copy remaining items from left half. { tempArray[index] = values[leftFirst]; leftFirst++; index++; } while (rightFirst <= rightLast) // Copy remaining items from right half. { tempArray[index] = values[rightFirst]; rightFirst++; index++; } for (index = saveFirst; index <= rightLast; index++) values[index] = tempArray[index]; }
static void mergeSort(int first, int last) // Sorts the values array using the merge sort algorithm. { if (first < last) { int middle = (first + last) / 2; mergeSort(first, middle); mergeSort(middle + 1, last); merge(first, middle, middle + 1, last); } }
///////////////////////////////////////////////////////////////// // // Quick Sort
static int split(int first, int last) { int splitVal = values[first]; int saveF = first; boolean onCorrectSide; first++; do { onCorrectSide = true; while (onCorrectSide) // move first toward last if (values[first] > splitVal) onCorrectSide = false; else { first++; onCorrectSide = (first <= last); } onCorrectSide = (first <= last); while (onCorrectSide) // move last toward first if (values[last] <= splitVal) onCorrectSide = false; else { last--; onCorrectSide = (first <= last); } if (first < last) { swap(first, last); first++; last--; } } while (first <= last); swap(saveF, last); return last; }
static void quickSort(int first, int last) { if (first < last) { int splitPoint; splitPoint = split(first, last); // values[first]..values[splitPoint - 1] <= splitVal // values[splitPoint] = splitVal // values[splitPoint+1]..values[last] > splitVal quickSort(first, splitPoint - 1); quickSort(splitPoint + 1, last); } }
/////////////////////////////////////////////////////////////// // // Smart Quick Sort algorithms for Assignment 6
/** * split4SmartQuickSort splits the array (from first to last) into two subarrays, left and right, using the * provided splitVal. It needs to calculate on the fly the average of all the elements of the left subarray * and average of all elements of the right subarray, and store the two averages in the @pivot object. * The following implementation is only copy of the code from * the split function (from line 247) and you should enhance the function to implement what we need to calculate the averages * as the pivot for the left and right subarray. * * Please be noted that splitVal may not even exist in the array since we choose the average. * But this should not impact the correctness algorithm of splitting and sorting. * @param first * @param last * @param splitVal * @param leftRightAverages * @return */ static int split4SmartQuickSort(int first, int last, int splitVal, SmartQuickSortPivot leftRightAverages) { int saveF = first; boolean onCorrectSide;
first++; do { onCorrectSide = true; while (onCorrectSide) // move first toward last if (values[first] > splitVal) onCorrectSide = false; else { first++; onCorrectSide = (first <= last); }
onCorrectSide = (first <= last); while (onCorrectSide) // move last toward first if (values[last] <= splitVal) onCorrectSide = false; else { last--; onCorrectSide = (first <= last); }
if (first < last) { swap(first, last); first++; last--; } } while (first <= last);
swap(saveF, last); return last; }
/** * Smart quick sort allows the use of a better splitting value (the pivot value) when to split the array * into two. In this algorithm, we will use the average of the array (subarray) of all elements as the pivot. * * Each call to split (split4SmartQuickSort method), the splitValue will be passed and also the split4SmartQuickSort * will return the averages of left subarray and right subarray. The two averages, each will be used for the * following calls to smartQuickSort. * * @param first the first element * @param last the last element * @param splitVal the pivot value for splitting the array */ static void smartQuickSort(int first, int last, int splitVal) { if (first < last) { int splitPoint; SmartQuickSortPivot leftRightAverages = new SmartQuickSortPivot();
splitPoint = split4SmartQuickSort(first, last, splitVal, leftRightAverages); // values[first]..values[splitPoint - 1] <= splitVal // values[splitPoint] does not necessarily have the splitVal as the splitVal may not even exist in the array // values[splitPoint+1]..values[last] > splitVal
smartQuickSort(first, splitPoint - 1, leftRightAverages.left); smartQuickSort(splitPoint + 1, last, leftRightAverages.right); } }
///////////////////////////////////////////////////////////////// // // Heap Sort
static int newHole(int hole, int lastIndex, int item) // If either child of hole is larger than item this returns the index // of the larger child; otherwise it returns the index of hole. { int left = (hole * 2) + 1; int right = (hole * 2) + 2; if (left > lastIndex) // hole has no children return hole; else if (left == lastIndex) // hole has left child only if (item < values[left]) // item < left child return left; else // item >= left child return hole; else // hole has two children if (values[left] < values[right]) // left child < right child if (values[right] <= item) // right child <= item return hole; else // item < right child return right; else // left child >= right child if (values[left] <= item) // left child <= item return hole; else // item < left child return left; }
static void reheapDown(int item, int root, int lastIndex) // Precondition: Current root position is "empty". // // Inserts item into the tree and ensures shape and order properties. { int hole = root; // current index of hole int newhole; // index where hole should move to
newhole = newHole(hole, lastIndex, item); // find next hole while (newhole != hole) { values[hole] = values[newhole]; // move value up hole = newhole; // move hole down newhole = newHole(hole, lastIndex, item); // find next hole } values[hole] = item; // fill in the final hole }
static void heapSort() // Sorts the values array using the heap sort algorithm. { int index; // Convert the array of values into a heap. for (index = SIZE/2 - 1; index >= 0; index--) reheapDown(values[index], index, SIZE - 1); // Sort the array. for (index = SIZE - 1; index >=1; index--) { swap(0, index); reheapDown(values[0], 0, index - 1); } }
///////////////////////////////////////////////////////////////// // // Main
public static void main(String[] args) { initValues(); printValues(); System.out.println("values is sorted: " + isSorted()); System.out.println(); // make call to sorting method here (just remove //) // selectionSort(); // bubbleSort(); // shortBubble(); // insertionSort(); // mergeSort(0, SIZE - 1); // quickSort(0, SIZE - 1);
/** you can either compute the average first as the first pivot or simplify choose the first one as the pivot */ smartQuickSort(0, SIZE-1, values[0]); // heapSort();
printValues(); System.out.println("values is sorted: " + isSorted()); System.out.println(); } }
---------------------------------------------------
Here is smart quick sort pivot
package ch10;
public class SmartQuickSortPivot { public int left; public int right; }
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started