Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Write a C++ program for the question below. Please implement and use the codes that are given below. You are going to exercise your knowledge

Write a C++ program for the question below. Please implement and use the codes that are given below.

You are going to exercise your knowledge of stacks. First, look up and familiarize yourself with the STL stack class. You will use this class for this assignment.

1 - Infix to Postfix Implement the Infix to Postfix algorithm discussed in class: string infixToPostfix(string exp) This will take an infix expression as an argument, and return the corresponding postfix expression. Operands will be single upper-case letter, and operators will be *, / +, -. You may assume the input expression is correct. Your algorithm should skip over any blank spaces it finds.

2 - Postfix Evaluation Implement the Postfix Evaluation algorithm discussed in class. double evaluatePostfix(string exp) This will take a postfix expression of the form generated in part 1, and evaluate it as a double value. See below for the values of the operands.

3 - PostfixToPrefix You will implement an algorithm to convert from postfix to prefix. string postfixToPrefix(string exp)

The postfix to prefix conversion algorithm is as follows:

Create a stacks, S, of strings

Scan the postfix expression from left to right (skip over whitespace) If the character (ch) is an operand: S.push(ch) If the character (ch) is an operator, x = s.pop(); y = s.pop(); S.push(ch + y + x) (string concatenation) At the end, the resulting prefix string will be the only element in the stack.

Main Program Repeatedly: 1. Read an infix expression from a file (a single line), consisting of upper case letters and operators +, -, *, /, and possible blank spaces. Assume the expression is correct. 2. Invoke the infixToPostfix function to create the corresponding postfix expression. 3. Invoke the postfixToPrefix function, passing the postfix expression generated in step 2, to create the corresponding prefix expression. 4. Invoke the evaluatePostfix function, passing the postfix expression generated in step 2, to evaluate the expression. Assume the following operand values (this may be hard-coded): A: 2.0 B: 3.0 C: 4.0 D: 5.0 E: 6.0

Use the following file of infix expressions for your run:

***NOTE: This file should be opened as a .txt file.***

A + B * C ( A + B ) * C A *( B + C * D )+ E A * ( ( E / B ) + C ) ( A B ) / C * ( D + E )

Output should look like this:

image text in transcribed

CODES:

.....................................

LinkedStack.cpp Codes:

......................................

#include // For assert

#include "LinkedStack.h" // Header file

LinkedStack::LinkedStack() : topPtr(nullptr)

{

} // end default constructor

LinkedStack::LinkedStack(const LinkedStack& aStack)

{

// Point to nodes in original chain

Node* origChainPtr = aStack.topPtr;

if (origChainPtr == nullptr)

topPtr = nullptr; // Original stack is empty

else

{

// Copy first node

topPtr = new Node();

topPtr->setItem(origChainPtr->getItem());

// Point to first node in new chain

Node* newChainPtr = topPtr;

// Advance original-chain pointer

origChainPtr = origChainPtr->getNext();

// Copy remaining nodes

while (origChainPtr != nullptr)

{

// Get next item from original chain

ItemType nextItem = origChainPtr->getItem();

// Create a new node containing the next item

Node* newNodePtr = new Node(nextItem);

// Link new node to end of new chain

newChainPtr->setNext(newNodePtr);

// Advance pointer to new last node

newChainPtr = newChainPtr->getNext();

// Advance original-chain pointer

origChainPtr = origChainPtr->getNext();

} // end while

newChainPtr->setNext(nullptr); // Flag end of chain

} // end if

} // end copy constructor

LinkedStack::~LinkedStack()

{

// Pop until stack is empty

while (!isEmpty())

pop();

} // end destructor

bool LinkedStack::push(const ItemType& newItem)

{

Node* newNodePtr = new Node(newItem, topPtr);

topPtr = newNodePtr;

newNodePtr = nullptr;

return true;

} // end push

bool LinkedStack::pop()

{

bool result = false;

if (!isEmpty())

{

// Stack is not empty; delete top

Node* nodeToDeletePtr = topPtr;

topPtr = topPtr->getNext();

// Return deleted node to system

nodeToDeletePtr->setNext(nullptr);

delete nodeToDeletePtr;

nodeToDeletePtr = nullptr;

result = true;

} // end if

return result;

} // end pop

ItemType LinkedStack::peek() const

{

assert(!isEmpty()); // Enforce precondition during debugging

// Stack is not empty; return top

return topPtr->getItem();

} // end getTop

bool LinkedStack::isEmpty() const

{

return topPtr == nullptr;

} // end isEmpty

................................................................

LinkedStack.h Codes:

................................................................

#ifndef LINKED_STACK_

#define LINKED_STACK_

#include "Node.h"

class LinkedStack

{

private:

Node* topPtr; // Pointer to first node in the chain;

// this node contains the stack's top

public:

LinkedStack();

LinkedStack(const LinkedStack& aStack); // Copy constructor

~LinkedStack();

bool isEmpty() const;

bool push(const ItemType& newEntry);

bool pop();

ItemType peek() const;

};

#endif

.......................................................

LinkedStackTest.cpp Codes:

.......................................................

#include "LinkedStack.h"

#include

using namespace std;

int main()

{

LinkedStack s;

cout

s.push(1);

s.push(2);

s.push(3);

s.push(4);

cout

cout

LinkedStack s2(s);

cout

cout

s.pop();

cout

s.push(5);

cout

s.pop();

s.pop();

s.pop();

s.pop();

cout

//s.peek();

}

............................................................

Node.cpp Codes:

............................................................

#include "Node.h"

Node::Node() : next(nullptr)

{

} // end default constructor

Node::Node(const ItemType& anItem) : item(anItem), next(nullptr)

{

} // end constructor

Node::Node(const ItemType& anItem, Node* nextNodePtr) :

item(anItem), next(nextNodePtr)

{

} // end constructor

void Node::setItem(const ItemType& anItem)

{

item = anItem;

} // end setItem

void Node::setNext(Node* nextNodePtr)

{

next = nextNodePtr;

} // end setNext

ItemType Node::getItem() const

{

return item;

} // end getItem

Node* Node::getNext() const

{

return next;

} // end getNext

........................................................

Node.h Codes:

.........................................................

#ifndef NODE_

#define NODE_

#include

using namespace std;

typedef int ItemType;

class Node

{

private:

ItemType item; // A data item

Node* next; // Pointer to next node

public:

Node();

Node(const ItemType& anItem);

Node(const ItemType& anItem, Node* nextNodePtr);

void setItem(const ItemType& anItem);

void setNext(Node* nextNodePtr);

ItemType getItem() const ;

Node* getNext() const ;

}; // end Node

#endif

infix prefix postfix value 14.0 20.0 (A+B) C ABC AB+C etc

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Design Using Entity Relationship Diagrams

Authors: Sikha Saha Bagui, Richard Walsh Earp

3rd Edition

103201718X, 978-1032017181

More Books

Students also viewed these Databases questions

Question

Why is it safe to declare named constants public?

Answered: 1 week ago

Question

Why do HCMSs exist? Do they change over time?

Answered: 1 week ago