Question: Write an MD code for (N) Lennard-Jones particles in a two-dimensional (L times L) square box, and include a one-body gravity term in the energy:

Write an MD code for \(N\) Lennard-Jones particles in a two-dimensional \(L \times L\) square box, and include a one-body gravity term in the energy: \(\sum_{i=1}^{N} m g y_{i}\). Apply periodic boundary conditions in the \(x\)-direction but a repulsive Weeks-Chandler-Andersen (WCA) (Weeks et al., 1971) potential on the top and bottom walls. The WCA potential is the repulsive part of a LennardJones potential for \(r / D<(2)^{1 / 6}\), with the potential shifted up by \(\varepsilon\). Show that the average kinetic energy per particle is independent of the height \(y\) in the box but the average scaled density \(n D^{2}\) depends on the vertical position in the box.

Step by Step Solution

3.36 Rating (159 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

Below is a Python code implementing a Molecular Dynamics MD simulation for N LennardJones particles in a twodimensional L times L square box including a onebody gravity term and applying periodic boun... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Statistical Reasoning For Everyday Life Questions!