Two resistors, with resistances (R_{1}) and (R_{2}), are connected in series. (R_{1}) is normally distributed with mean

Question:

Two resistors, with resistances \(R_{1}\) and \(R_{2}\), are connected in series. \(R_{1}\) is normally distributed with mean \(100 \Omega\) and standard deviation \(5 \Omega\), and \(R_{2}\) is normally distributed with mean \(120 \Omega\) and standard deviation \(10 \Omega\). Assume \(R_{1}\) and \(R_{2}\) are independent.

a. What is the probability that \(R_{2}>R_{1}\) ?

b. What is the probability that \(R_{2}\) exceeds \(R_{1}\) by more than \(30 \Omega\) ?

c. The combined resistance is \(R_{1}+R_{2}\). What is the probability that the combined resistance is less than \(200 \Omega\) ?

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: