11. Evaluate the integral $$ int_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}(x_1^2-2x_1x_4)e^{-(1/2)Q}dx_1 dx_2 dx_3 dx_4 $$ where $$ Q = 3x_1^2 + 2x_2^2...

Question:

11. Evaluate the integral

$$

\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x_1^2-2x_1x_4)e^{-(1/2)Q}dx_1 dx_2 dx_3 dx_4

$$

where

$$

Q = 3x_1^2 + 2x_2^2 + 2x_3^2 + x_4^2 + 2x_1x_2 + 2x_3x_4 - 6x_1 - 2x_2 - 6x_3 - 2x_4 + 8.

$$

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: