11. Evaluate the integral $$ int_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}(x_1^2-2x_1x_4)e^{-(1/2)Q}dx_1 dx_2 dx_3 dx_4 $$ where $$ Q = 3x_1^2 + 2x_2^2...
Question:
11. Evaluate the integral
$$
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x_1^2-2x_1x_4)e^{-(1/2)Q}dx_1 dx_2 dx_3 dx_4
$$
where
$$
Q = 3x_1^2 + 2x_2^2 + 2x_3^2 + x_4^2 + 2x_1x_2 + 2x_3x_4 - 6x_1 - 2x_2 - 6x_3 - 2x_4 + 8.
$$
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Matrices With Applications In Statistics
ISBN: 9780534980382
2nd Edition
Authors: Franklin A Graybill
Question Posted: