Bias-variancetradeoff2: Somestatisticalmethodsdiscussedin Chapters 7 and 8 use a shrinkage orsmoothingoftheMLestimator,suchthatastheamountofshrinkagein- creases, thebiasincreasesbutthevariancedecreases.Toillustratehowthiscanhappen,for Y binom(n, ), let
Question:
Bias-variancetradeoff2: Somestatisticalmethodsdiscussedin Chapters 7 and 8 use a
“shrinkage” or“smoothing”oftheMLestimator,suchthatastheamountofshrinkagein-
creases, thebiasincreasesbutthevariancedecreases.Toillustratehowthiscanhappen,for Y ∼ binom(n, π), let ˜π = (Y + c)~(n + 2c) beanestimatorof π for aconstant c ≥ 0.
(a) Showthat ˜π is aweightedaverageof ˆπ = Y ~n and 1/2,thusshrinkingtheMLestimator
ˆπ toward1/2,withgreatershrinkageas c increases.
(b) Findthebiasof ˜π and var(˜π). Showthatas c increases, the|bias|increasesandthe variancedecreases.
(c) Explainhowtheestimate ˜π = (y + c)~(n + 2c) results fromaBayesianapproachtoesti-
mation. Explaintheinfluenceof n on theextentofshrinkagetoward1/2.
Step by Step Answer:
Foundations Of Statistics For Data Scientists With R And Python
ISBN: 9780367748456
1st Edition
Authors: Alan Agresti