Foralargenumber n of independentPoissonrandomvariables {Yi}, with = E(Yi), consider testing H0: = 0. (a) Showthatthescoreteststatisticis
Question:
Foralargenumber n of independentPoissonrandomvariables {Yi}, with μ = E(Yi), consider testing H0: μ = μ0.
(a) Showthatthescoreteststatisticis Z =
º
n( ¯ Y − μ0)~º
μ0.
(b) Showthatthe Waldteststatisticis Z =
º
n( ¯ Y − μ0)~
º
¯ Y . Under H0, why wouldyou expectthenormaldistributionapproximationtobebetterforthescoreteststatistic?
(c) Showthatthevalueofthelikelihood-ratioteststatisticforobserveddata {yi} is 2(L1 − L0) = 2[n(μ0 − ¯y) + n¯y log(¯y~μ0)].
(d) Explainhowthesetestscanbeusedtoconstructconfidenceintervals.Illustrateforthe Waldandscoreconfidenceintervals,andexplainwhyyouwouldexpectthescoremethod to performbetter.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Foundations Of Statistics For Data Scientists With R And Python
ISBN: 9780367748456
1st Edition
Authors: Alan Agresti
Question Posted: