(Linear and Nonlinear Models) Determine which of the following models can be transformed into linear models and...

Question:

(Linear and Nonlinear Models) Determine which of the following models can be transformed into linear models and which cannot, and identify the transformation in the cases where it is possible.

(a) \(Y_{t}=\left(\prod_{j=1}^{k} X_{j t}^{\beta_{j}}ight) V_{t}\), where \(V_{t} \sim \operatorname{Gamma}

(a, b)\)

(b) \(\frac{Y_{t}^{\lambda}-1}{\lambda}=\beta_{1}+\beta_{2}\left(\frac{X_{t}^{\delta}-1}{\delta}ight)+\varepsilon_{t}\), where \(\varepsilon_{\mathrm{t}} \sim N\left(0, \sigma^{2}ight)\)

(c) \(Y_{t}=\beta_{0}+\beta_{1} X_{t}^{\beta_{2}}+\varepsilon_{t}\) where \(\varepsilon_{t} \sim N\left(0, \sigma^{2}ight)\)

(d) \(Y_{t}=\beta_{1}\left(\beta_{2} L_{t}^{-\beta_{3}}+\left(1-\beta_{2}ight) K_{t}^{-\beta_{3}}ight)^{-\beta_{4} / \beta_{1}} \exp \left(\varepsilon_{t}ight)\), where \(\varepsilon_{\mathrm{t}} \sim f(e)\)

(e) \(Y_{t}=\left(1+\exp \left(\mathbf{X}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t}ight)ight)^{-1}\), where \(\varepsilon_{t} \sim \operatorname{Logistic}(0, s)\)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: