(Linear and Nonlinear Models) Determine which of the following models can be transformed into linear models and...
Question:
(Linear and Nonlinear Models) Determine which of the following models can be transformed into linear models and which cannot, and identify the transformation in the cases where it is possible.
(a) \(Y_{t}=\left(\prod_{j=1}^{k} X_{j t}^{\beta_{j}}ight) V_{t}\), where \(V_{t} \sim \operatorname{Gamma}
(a, b)\)
(b) \(\frac{Y_{t}^{\lambda}-1}{\lambda}=\beta_{1}+\beta_{2}\left(\frac{X_{t}^{\delta}-1}{\delta}ight)+\varepsilon_{t}\), where \(\varepsilon_{\mathrm{t}} \sim N\left(0, \sigma^{2}ight)\)
(c) \(Y_{t}=\beta_{0}+\beta_{1} X_{t}^{\beta_{2}}+\varepsilon_{t}\) where \(\varepsilon_{t} \sim N\left(0, \sigma^{2}ight)\)
(d) \(Y_{t}=\beta_{1}\left(\beta_{2} L_{t}^{-\beta_{3}}+\left(1-\beta_{2}ight) K_{t}^{-\beta_{3}}ight)^{-\beta_{4} / \beta_{1}} \exp \left(\varepsilon_{t}ight)\), where \(\varepsilon_{\mathrm{t}} \sim f(e)\)
(e) \(Y_{t}=\left(1+\exp \left(\mathbf{X}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t}ight)ight)^{-1}\), where \(\varepsilon_{t} \sim \operatorname{Logistic}(0, s)\)
Step by Step Answer:
Mathematical Statistics For Economics And Business
ISBN: 9781461450221
2nd Edition
Authors: Ron C.Mittelhammer