For the slipper-pad bearing of Prob. 1023, use the continuity equation, appropriate boundary conditions, and the one-dimensional

Question:

For the slipper-pad bearing of Prob. 10–23, use the continuity equation, appropriate boundary conditions, and the one-dimensional Leibniz theorem (see Chap. 4) to show that


Data from Problem 23

A slipper-pad bearing (Fig. P10–23) is often encountered in lubrication problems. Oil flows between two blocks; the upper one is stationary, and the lower one is moving in this case. The drawing is not to scale; in actuality, h ≪ L. The thin gap between the blocks converges with increasing x. Specifically, gap height h decreases linearly from h0 at x = 0 to hL at x = L. Typically, the gap height length scale h0 is much smaller than the axial length scale L. This problem is more complicated than simple Couette flow between parallel plates because of the changing gap height. In particular, axial velocity component u is a function of both x and y, and pressure P varies nonlinearly from P = P0 at x = 0 to P = PL at x = L. (∂P/∂x is not constant). Gravity forces are negligible in this flow field, which we approximate as two-dimensional, steady, and laminar. In fact, since h is so small and oil is so viscous, the creeping flow approximations are used in the analysis of such lubrication problems. Let the characteristic length scale associated with x be L, and let that associated with y be h0 (x ∼ L and y ∼ h0). Let u ∼ V. Assuming creeping flow, generate a characteristic scale for pressure difference ΔP = P – P0 in terms of L, h0, μ, and V.


FIGURE P10–23

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: