Let f (n) an= g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.
Question:
Let f (n) an= g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.
a. f (n) = O(g(n)) implies g(n) = O(f (n)).
b. f (n) + g(n) = Θ(min(f (n), g(n))).
c. f (n) = O(g(n)) implies lg(f (n)) = O(lg(g(n))), where lg(g(n)) ≥ 1 and f (n) ≥ 1 for all sufficiently large n.
d. f (n) = O(g(n)) implies 2f(n) = O (2g(n)).
e. f (n) = O ((f (n))2).
f. f (n) = O(g(n)) implies g(n) = Ω(f (n)).
g. f (n) = Θ(f (n/2)).
h. f (n) + o(f (n)) = Θ(f (n)).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction to Algorithms
ISBN: 978-0262033848
3rd edition
Authors: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
Question Posted: