Find the supremum and infimum limits for each sequence given below. a. (x_{n}=(-1)^{n}left(1+n^{-1}ight)) b. (x_{n}=(-1)^{n}) c. (x_{n}=(-1)^{n}
Question:
Find the supremum and infimum limits for each sequence given below.
a. \(x_{n}=(-1)^{n}\left(1+n^{-1}ight)\)
b. \(x_{n}=(-1)^{n}\)
c. \(x_{n}=(-1)^{n} n\)
d. \(x_{n}=n^{2} \sin ^{2}\left(\frac{1}{2} n \piight)\)
e. \(x_{n}=\sin (n)\)
f. \(x_{n}=\left(1+n^{-1}ight) \cos (n \pi)\)
g. \(x_{n}=\sin \left(\frac{1}{2} n \piight) \cos \left(\frac{1}{2} n \piight)\)
h. \(x_{n}=(-1)^{n} n(1+n)^{-n}\)
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: