Show that the maximum likelihood estimate of the noise variance in our linear model, [widehat{sigma^{2}}=frac{1}{N}left(mathbf{t}^{top} mathbf{t}-mathbf{t}^{top} mathbf{X}

Question:

Show that the maximum likelihood estimate of the noise variance in our linear model,

\[\widehat{\sigma^{2}}=\frac{1}{N}\left(\mathbf{t}^{\top} \mathbf{t}-\mathbf{t}^{\top} \mathbf{X} \widehat{\mathbf{w}}\right)\]

can also be expressed as

\[\widehat{\sigma^{2}}=\frac{1}{N} \sum_{n=1}^{N}\left(t_{n}-\mathbf{x}_{n}^{\top} \mathbf{w}\right)^{2}\]

(work backwards from the second expression.)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

A First Course In Machine Learning

ISBN: 9781498738484

2nd Edition

Authors: Simon Rogers , Mark Girolam

Question Posted: