Kiwi Oil is sold in 950-milliliter (ml) cans. The mean volume of oil placed in a can
Question:
Kiwi Oil is sold in 950-milliliter (ml) cans. The mean volume of oil placed in a can is 920 ml with a standard deviation of 12 ml. Assuming a normal distribution, what is the probability that the filling machine will cause an overflow of a can, that is, the probability that more than 950 ml will be placed in the can?
Kiwi Oil | |||||||
Probability Calculations Using the Normal Distribution - Template | |||||||
Enter data only in the shaded cells | |||||||
This spreadsheet is designed to calculate the probability of values equal to, or less than, a desired x value, | |||||||
given the mean and standard deviation of a normally distributed variable. It uses the cumulative normal distribution | |||||||
Enter the mean of the distribution in shaded cell D12 and the standard deviation in shaded cell D13. below. | |||||||
Enter the desired X-value in shaded cell D14, below. The calculated z-value and probability will be seen in D15 and D16. | |||||||
Mean of distribution | 920 | ||||||
Std deviation of distribution | 12 | ||||||
Desired x-value | 950 | ||||||
Calculated z-value | 2.50 | ||||||
Probability of x, or less | 0.99379 | ||||||
(X-axis) | Probability Using | ||||||
Desired x-values | Equivalent - Z Values | NORMS.DIST | |||||
880 | -3.33 | 0.00043 | |||||
881 | -3.25 | 0.00058 | |||||
882 | -3.17 | 0.00077 | |||||
883 | -3.08 | 0.00102 | |||||
884 | -3.00 | 0.00135 | |||||
885 | -2.92 | 0.00177 | |||||
886 | -2.83 | 0.00230 | |||||
887 | -2.75 | 0.00298 | |||||
888 | -2.67 | 0.00383 | |||||
889 | -2.58 | 0.00489 | |||||
890 | -2.50 | 0.00621 | |||||
891 | -2.42 | 0.00783 | |||||
892 | -2.33 | 0.00982 | |||||
893 | -2.25 | 0.01222 | |||||
894 | -2.17 | 0.01513 | |||||
895 | -2.08 | 0.01861 | |||||
896 | -2.00 | 0.02275 | |||||
897 | -1.92 | 0.02764 | |||||
898 | -1.83 | 0.03338 | |||||
899 | -1.75 | 0.04006 | |||||
900 | -1.67 | 0.04779 | |||||
901 | -1.58 | 0.05667 | |||||
902 | -1.50 | 0.06681 | |||||
903 | -1.42 | 0.07829 | |||||
904 | -1.33 | 0.09121 | |||||
905 | -1.25 | 0.10565 | |||||
906 | -1.17 | 0.12167 | |||||
907 | -1.08 | 0.13933 | |||||
908 | -1.00 | 0.15866 | |||||
909 | -0.92 | 0.17966 | |||||
910 | -0.83 | 0.20233 | |||||
911 | -0.75 | 0.22663 | |||||
912 | -0.67 | 0.25249 | |||||
913 | -0.58 | 0.27983 | |||||
914 | -0.50 | 0.30854 | |||||
915 | -0.42 | 0.33846 | |||||
916 | -0.33 | 0.36944 | |||||
917 | -0.25 | 0.40129 | |||||
918 | -0.17 | 0.43382 | |||||
919 | -0.08 | 0.46679 | |||||
920 | 0.00 | 0.50000 | |||||
921 | 0.08 | 0.53321 | |||||
922 | 0.17 | 0.56618 | |||||
923 | 0.25 | 0.59871 | |||||
924 | 0.33 | 0.63056 | |||||
925 | 0.42 | 0.66154 | |||||
926 | 0.50 | 0.69146 | |||||
927 | 0.58 | 0.72017 | |||||
928 | 0.67 | 0.74751 | |||||
929 | 0.75 | 0.77337 | |||||
930 | 0.83 | 0.79767 | |||||
931 | 0.92 | 0.82034 | |||||
932 | 1.00 | 0.84134 | |||||
933 | 1.08 | 0.86067 | |||||
934 | 1.17 | 0.87833 | |||||
935 | 1.25 | 0.89435 | |||||
936 | 1.33 | 0.90879 | |||||
937 | 1.42 | 0.92171 | |||||
938 |
Transcribed Image Text:
Cumulative Probability Cumulative Probability Function 1.00 0.90 0.80 0.70 0.60 0.50 040 0.30 0.20 0.10 0.00 4.0-3.8-3.6-3.4-3.2-3.0-2.8-2.6-2.4-2.2-2.0-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 z-values -NORMS.DIST
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
An Introduction To Six Sigma And Process ImprovementISBN: 9781133604587 2nd Edition Authors: James R. Evans, William M. Lindsay
Question Posted:
|