Wayback Cleaning Co. has found that standard size offices have a standard deviation of 5 minutes for
Question:
Wayback Cleaning Co. has found that standard size offices have a standard deviation of 5 minutes for their cleaning time. The operations manager knows that 95 percent of the offices require more than 120 person-minutes to clean. However, she wishes to find out the average cleaning time for the offices. Can you calculate that for her?
Wayback Cleaning Co. | |||||||||
Probability Calculations Using the Normal Distribution - Template | |||||||||
Enter data only in the shaded cells | |||||||||
This spreadsheet is designed to calculate the probability of values equal to, or less than, a desired x value, | |||||||||
given the mean and standard deviation of a normally distributed variable. It uses the cumulative normal distribution | |||||||||
Enter the mean of the distribution in shaded cell D11 and the standard deviation in shaded cell D12. below. | |||||||||
Enter the desired X-value in shaded cell D13, below. The calculated z-value and probability will be seen in D14 and D15. | |||||||||
Mean of distribution | 128.225 | ||||||||
Std deviation of distribution | 5 | ||||||||
Desired x-value | 120 | ||||||||
Calculated z-value | -1.645 | ||||||||
Probability of x, or less | 0.04998 | ||||||||
(X-axis) | Probability Using | ||||||||
Desired x-values | Equivalent - Z Values | NORMS.DIST | |||||||
108.225 | -4.00 | 0.00003 | |||||||
108.725 | -3.90 | 0.00005 | |||||||
109.225 | -3.80 | 0.00007 | |||||||
109.725 | -3.70 | 0.00011 | |||||||
110.225 | -3.60 | 0.00016 | |||||||
110.725 | -3.50 | 0.00023 | |||||||
111.225 | -3.40 | 0.00034 | |||||||
111.725 | -3.30 | 0.00048 | |||||||
112.225 | -3.20 | 0.00069 | |||||||
112.725 | -3.10 | 0.00097 | |||||||
113.225 | -3.00 | 0.00135 | |||||||
113.725 | -2.90 | 0.00187 | |||||||
114.225 | -2.80 | 0.00256 | |||||||
114.725 | -2.70 | 0.00347 | |||||||
115.225 | -2.60 | 0.00466 | |||||||
115.725 | -2.50 | 0.00621 | |||||||
116.225 | -2.40 | 0.00820 | |||||||
116.725 | -2.30 | 0.01072 | |||||||
117.225 | -2.20 | 0.01390 | |||||||
117.725 | -2.10 | 0.01786 | |||||||
118.225 | -2.00 | 0.02275 | |||||||
118.725 | -1.90 | 0.02872 | |||||||
119.225 | -1.80 | 0.03593 | |||||||
119.725 | -1.70 | 0.04457 | |||||||
120.225 | -1.60 | 0.05480 | |||||||
120.725 | -1.50 | 0.06681 | |||||||
121.225 | -1.40 | 0.08076 | |||||||
121.725 | -1.30 | 0.09680 | |||||||
122.225 | -1.20 | 0.11507 | |||||||
122.725 | -1.10 | 0.13567 | |||||||
123.225 | -1.00 | 0.15866 | |||||||
123.725 | -0.90 | 0.18406 | |||||||
124.225 | -0.80 | 0.21186 | |||||||
124.725 | -0.70 | 0.24196 | |||||||
125.225 | -0.60 | 0.27425 | |||||||
125.725 | -0.50 | 0.30854 | |||||||
126.225 | -0.40 | 0.34458 | |||||||
126.725 | -0.30 | 0.38209 | |||||||
127.225 | -0.20 | 0.42074 | |||||||
127.725 | -0.10 | 0.46017 | |||||||
128.225 | 0.00 | 0.50000 | |||||||
128.725 | 0.10 | 0.53983 | |||||||
129.225 | 0.20 | 0.57926 | |||||||
129.725 | 0.30 | 0.61791 | |||||||
130.225 | 0.40 | 0.65542 | |||||||
130.725 | 0.50 | 0.69146 | |||||||
131.225 | 0.60 | 0.72575 | |||||||
131.725 | 0.70 | 0.75804 | |||||||
132.225 | 0.80 | 0.78814 | |||||||
132.725 | 0.90 | 0.81594 | |||||||
133.225 | 1.00 | 0.84134 |
Transcribed Image Text:
Cumulative Probability Cumulative Probability Function 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.00 4.0-3.8-3.6-3.4-3.2-3.0-2.8-2.6-2.4-2.2-2.0-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.84.0 z-values -NORMS. DIST
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
An Introduction To Six Sigma And Process ImprovementISBN: 9781133604587 2nd Edition Authors: James R. Evans, William M. Lindsay
Question Posted:
|