a. Use Corollary 2 of the Mean Value Theorem for scalar functions to show that if two
Question:
a. Use Corollary 2 of the Mean Value Theorem for scalar functions to show that if two vector functions R1(t) and R2(t) have identical derivatives on an interval I, then the functions differ by a constant vector value throughout I.
b. Use the result in part (a) to show that if R(t) is any antiderivative of r(t) on I, then any other antiderivative of r on I equals R(t) + C for some constant vector C.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Thomas Calculus Early Transcendentals
ISBN: 9780321884077
13th Edition
Authors: Joel R Hass, Christopher E Heil, Maurice D Weir
Question Posted: